Linux内存管理图解(1)逻辑地址转线性地址

研究内核时间不长,前几天画了个内存管理大图,感觉太乱,准备细分写点东西也算是整理一下自己的思路。都是一个人瞎琢磨的,周围没有可以交流的,不正确的地方请指出来。

一、逻辑地址转线性地址
   
机器语言指令中出现的内存地址,都是逻辑地址,需要转换成线性地址,再经过MMU(CPU中的内存管理单元)转换成物理地址才能够被访问到。

我们写个最简单的hello world程序,用gcc编译,再反编译后会看到以下指令:

  1. mov    0x80495b0, %eax
复制代码


这里的内存地址0x80495b0 就是一个逻辑地址,必须加上隐含的DS 数据段的基地址,才能构成线性地址。也就是说 0x80495b0 是当前任务的DS数据段内的偏移。

<ignore_js_op>

在x86保护模式下,段的信息(段基线性地址、长度、权限等)即段描述符占8个字节,段信息无法直接存放在段寄存器中(段寄存器只有2字节)。Intel的设计是段描述符集中存放在GDT或LDT中,而段寄存器存放的是段描述符在GDT或LDT内的索引值(index)。

Linux中逻辑地址等于线性地址。为什么这么说呢?因为Linux所有的段(用户代码段、用户数据段、内核代码段、内核数据段)的线性地址都是从 0x00000000 开始,长度4G,这样 线性地址=逻辑地址+ 0x00000000,也就是说逻辑地址等于线性地址了。

这样的情况下Linux只用到了GDT,不论是用户任务还是内核任务,都没有用到LDT。GDT的第12和13项段描述符是 __KERNEL_CS 和__KERNEL_DS,第14和15项段描述符是 __USER_CS 和__USER_DS。内核任务使用__KERNEL_CS 和__KERNEL_DS,所有的用户任务共用__USER_CS 和__USER_DS,也就是说不需要给每个任务再单独分配段描述符。内核段描述符和用户段描述符虽然起始线性地址和长度都一样,但DPL(描述符特权级)是不一样的。__KERNEL_CS 和__KERNEL_DS 的DPL值为0(最高特权),__USER_CS 和__USER_DS的DPL值为3。
用gdb调试程序的时候,用info reg 显示当前寄存器的值:

  1. cs             0x73     115
  2. ss             0x7b     123
  3. ds             0x7b     123
  4. es             0x7b     123
复制代码


可以看到ds值为0x7b, 转换成二进制为 00000000 01111011,TI字段值为0,表示使用GDT,GDT索引值为 01111,即十进制15,对应的就是GDT内的__USER_DATA 用户数据段描述符。
从上面可以看到,Linux在x86的分段机制上运行,却通过一个巧妙的方式绕开了分段。Linux主要以分页的方式实现内存管理

转自:http://bbs.chinaunix.net/thread-2015599-1-1.html

原文地址:https://www.cnblogs.com/pipci/p/12392743.html