hadoop作业调优参数整理及原理

1 Map side tuning参数

1.1 MapTask运行内部原理

   Input Split的大小,决定了一个Job拥有多少个map,默认64M每个Split,如果输入的数据量巨大,那么默认的64M的block会有几万甚至几十万的Map Task,集群的网络传输会很大,最严重的是给Job Tracker的调度、队列、内存都会带来很大压力。

  mapred.min.split.size这个配置项决定了每个Input Split的最小值,也间接决定了一个Job的map数目。

      当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘。这中间的过程比较复杂,并且利用到了内存buffer来进行已经产生的部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能。如上图所示,每一个map都会对应存在一个内存buffer(MapOutputBuffer,即上图的buffer in memory),map会将已经产生的部分结果先写入到该buffer中,这个buffer默认是100MB大小,但是这个大小是可以根据job提交时的参数设定来调整的,该参数即为:io.sort.mb(mapred-default.xml中 )。当map的产生数据非常大时,并且把io.sort.mb调大,那么map在整个计算过程中spill的次数就势必会降低,map task对磁盘的操作就会变少,如果map tasks的瓶颈在磁盘上,这样调整就会大大提高map的计算性能。map做sort和spill的内存结构如下如所示:

     

  map在运行过程中,不停的向该buffer中写入已有的计算结果,但是该buffer并不一定能将全部的map输出缓存下来,当map输出超出一定阈值(比如100M),那么map就必须将该buffer中的数据写入到磁盘中去,这个过程在mapreduce中叫做spill。map并不是要等到将该buffer全部写满时才进行spill,因为如果全部写满了再去写spill,势必会造成map的计算部分等待buffer释放空间的情况。所以,map其实是当buffer被写满到一定程度(比如80%)时,就开始进行spill。这个阈值也是由一个job的配置参数来控制,即io.sort.spill.percent(mapred-default.xml中),默认为0.80或80%。这个参数同样也是影响spill频繁程度,进而影响map task运行周期对磁盘的读写频率的。但非特殊情况下,通常不需要人为的调整。调整io.sort.mb对用户来说更加方便。

  上面的参数定义了map输出结果在内存占用buffer的大小,当buffer达到一定阈值,会启动一个后台线程来对buffer的内容进行排序,然后写入本地磁盘(一个spill文件),在内存中的buffer如下图:(kvstart,kvend,kvindex为hadoop源码中操作buffer的变量)

根据map输出数据量的大小,可以适当的调整buffer的大小,注意是适当的调整,不是越大越好,假设内存无限大,io.sort.mb=1024(1G), 和io.sort.mb=300 (300M),前者未必比后者快,因为1G的数据排序一次和排序3次,每次300MB,一定是后者快(分而治之的思想)

io.sort.spill.percent

这个值就是上述buffer的阈值,默认是0.8,既80%,当buffer中的数据达到这个阈值,后台线程会起来对buffer中已有的数据进行排序,然后写入磁盘,此时map输出的数据继续往剩余的20% buffer写数据,如果buffer的剩余20%写满,排序还没结束,map task被block等待。如果你确认map输出的数据基本有序(很少见),排序时间很短,可以将这个阈值适当调高,更理想的,如果你的map输出是有序的数据(基本不可能吧?),那么可以把buffer设的更大,阈值设置为1.

Io.sort.factor

同时打开的文件句柄的数量,默认是10

当一个map task执行完之后,本地磁盘上(mapred.local.dir)有若干个spill文件,map task最后做的一件事就是执行merge sort,把这些spill文件合成一个文件(partition),有时候我们会自定义partition函数,就是在这个时候被调用的。执行merge sort的时候,每次同时打开多少个spill文件,就是由io.sort.factor决定的。打开的文件越多,不一定merge sort就越快,所以也要根据数据情况适当的调整。

补充:merge排序的结果是两个文件,一个是index,另一个是数据文件,index文件记录了每个不同的key在数据文件中的偏移量(这就是partition)

  当map task的计算部分全部完成后,如果map有输出,就会生成一个或者多个spill文件,这些文件就是map的输出结果。map在正常退出之前,需要将这些spill合并(merge)成一个,所以map在结束之前还有一个merge的过程。merge的过程中,有一个参数可以调整这个过程的行为,该参数为:io.sort.factor(mapred-default.xml中)。该参数默认为10。它表示当merge spill文件时,最多能有多少并行的stream向merge文件中写入。比如如果map产生的数据非常的大,产生的spill文件大于10,而io.sort.factor使用的是默认的10,那么当map计算完成做merge时,就没有办法一次将所有的spill文件merge成一个,而是会分多次,每次最多10个stream。这也就是说,当map的中间结果非常大,调大io.sort.factor,有利于减少merge次数,进而减少map对磁盘的读写频率,有可能达到优化作业的目的。

  当job指定了combiner的时候,我们都知道map介绍后会在map端根据combiner定义的函数将map结果进行合并。运行combiner函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即min.num.spill.for.combine(default 3,没找到在哪个配置文件中),当job中设定了combiner,并且spill数最少有3个的时候,那么combiner函数就会在merge产生结果文件之前运行。通过这样的方式,就可以在spill非常多需要merge,并且很多数据需要做combine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁盘的读写频率,有可能达到优化作业的目的。

  减少中间结果读写进出磁盘的方法不止这些,还有就是压缩。也就是说map的中间,无论是spill的时候,还是最后merge产生的结果文件,都是可以压缩的。压缩的好处在于,通过压缩减少写入读出磁盘的数据量。对中间结果非常大,磁盘速度成为map执行瓶颈的job,尤其有用。控制map中间结果是否使用压缩的参数为:mapred.compress.map.output(true/false,mapred-default.xml中)。将这个参数设置为true时,那么map在写中间结果时,就会将数据压缩后再写入磁盘,读结果时也会采用先解压后读取数据。这样做的后果就是:写入磁盘的中间结果数据量会变少,Reduce从每个map节点copy数据,Reduce从每个map节点copy数据,也会明显降低网络传输的时间,但是cpu会消耗一些用来压缩和解压。所以这种方式通常适合job中间结果非常大,瓶颈不在cpu,而是在磁盘的读写的情况。说的直白一些就是用cpu换IO。根据观察,通常大部分的作业cpu都不是瓶颈,除非运算逻辑异常复杂。所以对中间结果采用压缩通常来说是有收益的。以下是一个wordcount中间结果采用压缩和不采用压缩产生的map中间结果本地磁盘读写的数据量对比:

map中间结果不压缩:

map中间结果压缩:

可以看出,同样的job,同样的数据,在采用压缩的情况下,map中间结果能缩小将近10倍,如果map的瓶颈在磁盘,那么job的性能提升将会非常可观。

当采用map中间结果压缩的情况下,用户还可以选择压缩时采用哪种压缩格式进行压缩,现在hadoop支持的压缩格式有:GzipCodec,LzoCodec,BZip2Codec,LzmaCodec等压缩格式。

通常来说,想要达到比较平衡的cpu和磁盘压缩比,LzoCodec比较适合。但也要取决于job的具体情况。用户若想要自行选择中间结果的压缩算法,可以设置配置参数:mapred.map.output.compression.codec=org.apache.hadoop.io.compress.DefaultCodec(mapred-default.xml)或者其他用户自行选择的压缩方式。

1.2 Map side相关参数调优

2 Reduce 端调优参数

2.1 ReduceTask运行内部原理

  reduce的运行是分成三个阶段的。分别为copy->sort->reduce。由于job的每一个map都会根据reduce(n)数将数据分成map 输出结果分成n个partition,所以map的中间结果中是有可能包含每一个reduce需要处理的部分数据的。所以,为了优化reduce的执行时间,hadoop中是等job的第一个map结束后,所有的reduce就开始尝试从完成的map中下载该reduce对应的partition部分数据。这个过程就是通常所说的shuffle,也就是copy过程。

  Reduce task在做shuffle时,实际上就是从不同的已经完成的map上去下载属于自己这个reduce的部分数据,由于map通常有许多个,所以对一个reduce来说,下载也可以是并行的从多个map下载,这个并行度是可以调整的,调整参数为:mapred.reduce.parallel.copies(default 5)。默认情况下,每个只会有5个并行的下载线程在从map下数据,如果一个时间段内job完成的map有100个或者更多,那么reduce也最多只能同时下载5个map的数据,所以这个参数比较适合map很多并且完成的比较快的job的情况下调大,有利于reduce更快的获取属于自己部分的数据。但是调整的太大,又会事半功倍,容易造成集群拥堵,所以 Job tuning的同时,也是个权衡的过程,你要熟悉你的数据!

  Reduce的每一个下载线程在下载某个map数据的时候,有可能因为那个map中间结果所在机器发生错误,或者中间结果的文件丢失,或者网络瞬断等等情况,这样reduce的下载就有可能失败,所以reduce的下载线程并不会无休止的等待下去,当一定时间后下载仍然失败,那么下载线程就会放弃这次下载,并在随后尝试从另外的地方下载(因为这段时间map可能重跑)。所以reduce下载线程的这个最大的下载时间段是可以调整的,调整参数为:mapred.reduce.copy.backoff(default 300秒)。如果集群环境的网络本身是瓶颈,那么用户可以通过调大这个参数来避免reduce下载线程被误判为失败的情况。不过在网络环境比较好的情况下,没有必要调整。通常来说专业的集群网络不应该有太大问题,所以这个参数需要调整的情况不多。

  Reduce将map结果下载到本地时,同样也是需要进行merge的,所以io.sort.factor的配置选项同样会影响reduce进行merge时的行为,该参数的详细介绍上文已经提到,当发现reduce在shuffle阶段iowait非常的高的时候,就有可能通过调大这个参数来加大一次merge时的并发吞吐,优化reduce效率。

  Reduce在shuffle阶段对下载来的map数据,并不是立刻就写入磁盘的,而是会先缓存在内存中,然后当使用内存达到一定量的时候才刷入磁盘。这个内存大小的控制就不像map一样可以通过io.sort.mb来设定了,而是通过另外一个参数来设置:mapred.job.shuffle.input.buffer.percent(default 0.7),这个参数其实是一个百分比,意思是说,shuffile在reduce内存中的数据最多使用内存量为:0.7 × maxHeap of reduce task。也就是说,如果该reduce task的最大heap使用量(通常通过mapred.child.java.opts来设置,比如设置为-Xmx1024m)的一定比例用来缓存数据。默认情况下,reduce会使用其heapsize的70%来在内存中缓存数据。如果reduce的heap由于业务原因调整的比较大,相应的缓存大小也会变大,这也是为什么reduce用来做缓存的参数是一个百分比,而不是一个固定的值了。默认是0.7,既70%,通常这个比例是够了,但是我们讨论的还是大数据的情况,所以这个比例还是小了一些,0.8-0.9之间比较合适。(前提是你的reduce函数不会疯狂的吃掉内存)

  mapred.child.java.opts这个选项正是用来设置JVM堆的最大可用内存,但是也不要设置太大,如果超过2G,应该考虑从程序设计角度去优化。

  假设mapred.job.shuffle.input.buffer.percent为0.7,reduce task的max heapsize为1G,那么用来做下载数据缓存的内存就为大概700MB左右,这700M的内存,跟map端一样,也不是要等到全部写满才会往磁盘刷的,而是当这700M中被使用到了一定的限度(通常是一个百分比),就会开始往磁盘刷。这个限度阈值也是可以通过job参数来设定的,设定参数为:mapred.job.shuffle.merge.percent(default 0.66)。如果下载速度很快,很容易就把内存缓存撑大,那么调整一下这个参数有可能会对reduce的性能有所帮助。

  当reduce将所有的map上对应自己partition的数据下载完成后,就会开始真正的reduce计算阶段(中间有个sort阶段通常时间非常短,几秒钟就完成了,因为整个下载阶段就已经是边下载边sort,然后边merge的)。当reduce task真正进入reduce函数的计算阶段的时候,有一个参数也是可以调整reduce的计算行为。也就是:mapred.job.reduce.input.buffer.percent(default 0.0)。由于reduce计算时肯定也是需要消耗内存的,而在读取reduce需要的数据时,同样是需要内存作为buffer,这个参数是控制,需要多少的内存百分比来作为reduce读已经sort好的数据的buffer百分比。默认情况下为0,也就是说,默认情况下,reduce是全部从磁盘开始读处理数据。如果这个参数大于0,那么就会有一定量的数据被缓存在内存并输送给reduce,当reduce计算逻辑消耗内存很小时,可以分一部分内存用来缓存数据,反正reduce的内存闲着也是闲着。

2.2 Reduce side相关参数调优

mapred.job.shuffle.merge.percent(默认值0.66)

mapred.inmem.merge.threshold(默认值1000)

这是两个阈值的配置项,第一个指的从Map节点取数据过来,放到内存,当达到这个阈值之后,后台启动线程(通常是Linux native process)把内存中的数据merge sort,写到reduce节点的本地磁盘;

第二个指的是从map节点取过来的文件个数,当达到这个个数之后,也进行merger sort,然后写到reduce节点的本地磁盘;这两个配置项第一个优先判断,其次才判断第二个thresh-hold。

从实际经验来看,mapred.job.shuffle.merge.percent默认值确实太小了,完全可以设置到0.8左右;第二个默认值1000,完全取决于map输出数据的大小,如果map输出的数据很大,默认值1000反倒不好,应该小一些,如果map输出的数据不大(light weight),可以设置2000或者以上,都没问题。

本文转载自:http://www.tbdata.org/archives/1470

原文地址:https://www.cnblogs.com/pingh/p/3730991.html