Graham's Scan算法

原文链接:http://www.cnblogs.com/devymex/archive/2010/08/09/1795392.html

C++/STL实现:

#include <algorithm>
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
//二维点(或向量)结构体定义
#ifndef _WINDEF_
struct POINT
{
    int x;
    int y;
};
#endif
typedef vector<POINT> PTARRAY;
//判断两个点(或向量)是否相等
bool operator==(const POINT &pt1, const POINT &pt2)
{
    return (pt1.x == pt2.x && pt1.y == pt2.y);
}
// 比较向量中哪个与x轴向量(1, 0)的夹角更大
bool CompareVector(const POINT &pt1, const POINT &pt2)
{
    //求向量的模
    float m1 = sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y));
    float m2 = sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y));
    //两个向量分别与(1, 0)求内积
    float v1 = pt1.x / m1, v2 = pt2.x / m2;
    //如果向量夹角相等,则返回离基点较近的一个,保证有序
    return (v1 > v2 || v1 == v2 && m1 < m2);
}
//计算凸包
void CalcConvexHull(PTARRAY &vecSrc)
{
    //点集中至少应有3个点,才能构成多边形
    if (vecSrc.size() < 3)
    {
        return;
    }
    //查找基点
    POINT ptBase = vecSrc.front(); //将第1个点预设为最小点
    for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i)
    {
        //如果当前点的y值小于最小点,或y值相等,x值较小
        if (i->y < ptBase.y || (i->y == ptBase.y && i->x > ptBase.x))
        {
            //将当前点作为最小点
            ptBase = *i;
        }
    }
    //计算出各点与基点构成的向量
    for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end();)
    {
        //排除与基点相同的点,避免后面的排序计算中出现除0错误
        if (*i == ptBase)
        {
            i = vecSrc.erase(i);
        }
        else
        {
            //方向由基点到目标点
            i->x -= ptBase.x, i->y -= ptBase.y;
            ++i;
        }
    }
    //按各向量与横坐标之间的夹角排序
    sort(vecSrc.begin(), vecSrc.end(), &CompareVector);
    //删除相同的向量
    vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end());
    //计算得到首尾依次相联的向量
    for (PTARRAY::reverse_iterator ri = vecSrc.rbegin();
            ri != vecSrc.rend() - 1; ++ri)
    {
        PTARRAY::reverse_iterator riNext = ri + 1;
        //向量三角形计算公式
        ri->x -= riNext->x, ri->y -= riNext->y;
    }
    //依次删除不在凸包上的向量
    for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i)
    {
        //回溯删除旋转方向相反的向量,使用外积判断旋转方向
        for (PTARRAY::iterator iLast = i - 1; iLast != vecSrc.begin();)
        {
            int v1 = i->x * iLast->y, v2 = i->y * iLast->x;
            //如果叉积小于0,则无没有逆向旋转
            //如果叉积等于0,还需判断方向是否相逆
            if (v1 < v2 || (v1 == v2 && i->x * iLast->x > 0 &&
                            i->y * iLast->y > 0))
            {
                break;
            }
            //删除前一个向量后,需更新当前向量,与前面的向量首尾相连
            //向量三角形计算公式
            i->x += iLast->x, i->y += iLast->y;
            iLast = (i = vecSrc.erase(iLast)) - 1;
        }
    }
    //将所有首尾相连的向量依次累加,换算成坐标
    vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y;
    for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i)
    {
        i->x += (i - 1)->x, i->y += (i - 1)->y;
    }
    //添加基点,全部的凸包计算完成
    vecSrc.push_back(ptBase);
}

int main(void)
{
    int nPtCnt = 100; //生成的随机点数
    PTARRAY vecSrc, vecCH;
    for (int i = 0; i < nPtCnt; ++i)
    {
        POINT ptIn = { rand() % 20, rand() % 20 };
        vecSrc.push_back(ptIn);
        cout << ptIn.x << ", " << ptIn.y << endl;
    }
    CalcConvexHull(vecSrc);
    cout << "
Convex Hull:
";
    for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end(); ++i)
    {
        cout << i->x << ", " << i->y << endl;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/panweishadow/p/3382333.html