linux内核源码阅读之facebook硬盘加速flashcache之六


其实到目前为止,如果对读流程已经能轻松地看懂了,那么写流程不需要太多脑细胞。我觉得再写下去没有太大的必要了,后面想想为了保持flashcache完整性,还是写出来吧。接着到写流程:
1530static void
1531flashcache_write(struct cache_c *dmc, struct bio *bio)
1532{
1533     int index;
1534     int res;
1535     struct cacheblock *cacheblk;
1536     int queued;
1537    
1538     spin_lock_irq(&dmc->cache_spin_lock);
1539     res = flashcache_lookup(dmc, bio, &index);
1540     /*
1541     * If cache hit and !BUSY, simply redirty page.
1542     * If cache hit and BUSY, must wait for IO in prog to complete.
1543     * If cache miss and found a block to recycle, we need to
1544     * (a) invalidate any partial hits,
1545     * (b) write to cache.
1546     */
1547     if (res != -1) {
1548          /* Cache Hit */
1549          cacheblk = &dmc->cache[index];         
1550          if ((cacheblk->cache_state & VALID) &&
1551              (cacheblk->dbn == bio->bi_sector)) {
1552               /* Cache Hit */
1553               flashcache_write_hit(dmc, bio, index);
1554          } else {
1555               /* Cache Miss, found block to recycle */
1556               flashcache_write_miss(dmc, bio, index);
1557          }
1558          return;
1559     }
1560     /*
1561     * No room in the set. We cannot write to the cache and have to
1562     * send the request to disk. Before we do that, we must check
1563     * for potential invalidations !
1564     */
1565     queued = flashcache_inval_blocks(dmc, bio);
1566     spin_unlock_irq(&dmc->cache_spin_lock);
1567     if (queued) {
1568          if (unlikely(queued < 0))
1569               flashcache_bio_endio(bio, -EIO);
1570          return;
1571     }
1572     /* Start uncached IO */
1573     flashcache_start_uncached_io(dmc, bio);
1574     flashcache_clean_set(dmc, hash_block(dmc, bio->bi_sector));
1575}

第1539行查找是否命中,这里有几种情况:
1)命中且cache空闲,直接写cache块并设置DIRTY标志
2)命中且cache忙,等待上一个请求完成
3)不命中并且找到可用的cache块,invalid有交集的cache块,然后再写到cache
4)没有可用cache块,invalid有次的cache块,写到磁盘
第4种情况在第1573行直接写到磁盘,最后调用的还是dm_io_async_bvec。
再看第1种情况,进入到命中处理分支:
1468static void
1469flashcache_write_hit(struct cache_c *dmc, struct bio *bio, int index)
1470{
1471     struct cacheblock *cacheblk;
1472     struct pending_job *pjob;
1473     struct kcached_job *job;
1474
1475     cacheblk = &dmc->cache[index];
1476     if (!(cacheblk->cache_state & BLOCK_IO_INPROG) && (cacheblk->head == NULL)) {
1477          if (cacheblk->cache_state & DIRTY)
1478               dmc->dirty_write_hits++;
1479          dmc->write_hits++;
1480          cacheblk->cache_state |= CACHEWRITEINPROG;
1481          spin_unlock_irq(&dmc->cache_spin_lock);
1482          job = new_kcached_job(dmc, bio, index);
1483          if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_JOB_ALLOC_FAIL)) {
1484               if (job)
1485                    flashcache_free_cache_job(job);
1486               job = NULL;
1487               sysctl_flashcache_error_inject &= ~WRITE_HIT_JOB_ALLOC_FAIL;
1488          }
1489          if (unlikely(job == NULL)) {
1490               /* 
1491               * We have a write hit, and can't allocate a job.
1492               * Since we dropped the spinlock, we have to drain any 
1493               * pending jobs.
1494               */
1495               DMERR("flashcache: Write (hit) failed ! Can't allocate memory for cache IO, block %lu", 
1496                     cacheblk->dbn);
1497               flashcache_bio_endio(bio, -EIO);
1498               spin_lock_irq(&dmc->cache_spin_lock);
1499               flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
1500               cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
1501               spin_unlock_irq(&dmc->cache_spin_lock);
1502          } else {
1503               job->action = WRITECACHE; /* Write data to the source device */
1504               DPRINTK("Queue job for %llu", bio->bi_sector);
1505               atomic_inc(&dmc->nr_jobs);
1506               dmc->ssd_writes++;
1507               dm_io_async_bvec(1, &job->cache, WRITE, 
1508                         bio->bi_io_vec + bio->bi_idx,
1509                         flashcache_io_callback, job);
1510               flashcache_unplug_device(dmc->cache_dev->bdev);
1511               flashcache_clean_set(dmc, index / dmc->assoc);
1512          }
1513     } else {
1514          pjob = flashcache_alloc_pending_job(dmc);
1515          if (unlikely(sysctl_flashcache_error_inject & WRITE_HIT_PENDING_JOB_ALLOC_FAIL)) {
1516               if (pjob) {
1517                    flashcache_free_pending_job(pjob);
1518                    pjob = NULL;
1519               }
1520               sysctl_flashcache_error_inject &= ~WRITE_HIT_PENDING_JOB_ALLOC_FAIL;
1521          }
1522          if (unlikely(pjob == NULL))
1523               flashcache_bio_endio(bio, -EIO);
1524          else
1525               flashcache_enq_pending(dmc, bio, index, WRITECACHE, pjob);
1526          spin_unlock_irq(&dmc->cache_spin_lock);
1527     }
1528}

在1475行获得cache块,在1476行判断是否空闲,在有IO处理或者有pending_job挂着的时候都视为忙。如果cache块空闲,则进入if分支,接下来又是套路了,创建kcached_job,成功的话就在1507行下发写请求。然后接着看写返回时做了哪些处理?进入写回调函数之前,要记住这里设置了两个标志,一个是1480行cache块的CACHEWRITEINPROG,另一个是1503行kcached_job的WRITECACHE,带着这两个标志进入到写回调函数flashcache_io_callback,并直接找到需要的地方:
188     case WRITECACHE:
189          DPRINTK("flashcache_io_callback: WRITECACHE %d",
190               index);
191          spin_lock_irqsave(&dmc->cache_spin_lock, flags);
192          if (unlikely(sysctl_flashcache_error_inject & WRITECACHE_ERROR)) {
193               job->error = error = -EIO;
194               sysctl_flashcache_error_inject &= ~WRITECACHE_ERROR;
195          }
196          VERIFY(cacheblk->cache_state & CACHEWRITEINPROG);
197          if (likely(error == 0)) {
198#ifdef FLASHCACHE_DO_CHECKSUMS
199               dmc->checksum_store++;
200               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
201               flashcache_store_checksum(job);
202               /* 
203               * We need to update the metadata on a DIRTY->DIRTY as well 
204               * since we save the checksums.
205               */
206               push_md_io(job);
207               schedule_work(&_kcached_wq);
208               return;
209#else
210               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
211               /* Only do cache metadata update on a non-DIRTY->DIRTY transition */
212               if ((cacheblk->cache_state & DIRTY) == 0) {
213                    push_md_io(job);
214                    schedule_work(&_kcached_wq);
215                    return;
216               }
217#endif
218          } else {
219               dmc->ssd_write_errors++;               
220               spin_unlock_irqrestore(&dmc->cache_spin_lock, flags);
221          }
222          flashcache_bio_endio(bio, error);
223          break;

写到缓存成功的话,暂不管cache块的校验值,会来到210行,判断原来的cache块是否为脏,如果为脏那就什么事情都不用做了。因为如果cache块本来就是脏,那新来的IO可以直接覆盖到cache块上去。反之如果原来cache块是干净的,那么这个时候要把cache块已经变脏记录到SSD上,于是进入了第213行开始写cache块管理信息。到了这里似乎cache块已经写到缓存中,IO可以返回了,但是到了第215行为什么直接return呢?这里涉及到数据一致性的问题。其实cache块管理结构没有写到缓存中,这个写请求不能算完成。试想如果在这里调用了第222行flashcache_bio_endio把IO返回了,会有什么样的后果?其实大多数情况下是没有什么问题的,但如果在这个时候系统掉电或者宕机了,这时候缓存中记录的cache块状态是干净的,但又已经跟上层返回说IO已经写成功了,那么最后这一次写的数据就丢失了。当然对于大部分用户来说,这一点数据算什么?但对于像银行这样的系统,当你把辛苦了十年的积蓄存到自动取款机,这时自动取款机告诉你存成功了,但不幸的是后台刚好发生了我们上面描述的问题。结果你再查的时候没有你刚才存进去的钱,但你的钱确确实实被取款机收进去了,这时你会有怎样的感受?这里只是举个数据一致性在某些应用中是非常重要的,当然现实中绝大数银行是不会有这样的问题,银行可以有日志查出来,系统也有热备,也是带UPS保护的。
如果原来的cache块为脏的情况就以第222行flashcache_bio_endio结束了。
如果不为脏,那么调用213行将cache块管理结构写到缓存。
272void
273push_md_io(struct kcached_job *job)
274{
275     push(&_md_io_jobs, job);     
276}

这里只是简单放到队列中,具体处理的是第214行唤醒的工作队列。该工作队列对应的处理函数是:
303     process_jobs(&_md_io_jobs, flashcache_md_write);

这个函数怎么这么面熟呢?因为在第一小节里已经介绍过了:
这里小结一下写命中并且原cache块为干净的数据流程:
1)写命中调用dm_io_async_bvec写缓存
2)写缓存完成回调函数flashcache_io_callback,判断原cache块为干净,需要写cache块管理结构
3)由工作队列_kcached_wq调用flashcache_md_write写cache块管理结构,最终由flashcache_md_write_kickoff调用dm_io_async_bvec将cache块管理结构写到缓存
4)写缓存完成之后调用flashcache_md_write_callback
5)由工作队列_kcached_wq调用flashcache_md_write_done处理
6)在flashcache_md_write_done中判断job类型为WRITECACHE,最后调用flashcache_bio_endio返回
至此,这个IO才完成使命。
接下来讲第3种情况,这种情况就非常简单了。
1411static void
1412flashcache_write_miss(struct cache_c *dmc, struct bio *bio, int index)
1413{
1414     struct cacheblock *cacheblk;
1415     struct kcached_job *job;
1416     int queued;
1417
1418     cacheblk = &dmc->cache[index];
1419     queued = flashcache_inval_blocks(dmc, bio);
1420     if (queued) {
1421          if (unlikely(queued < 0))
1422               flashcache_bio_endio(bio, -EIO);
1423          spin_unlock_irq(&dmc->cache_spin_lock);
1424          return;
1425     }
1426     if (cacheblk->cache_state & VALID)
1427          dmc->wr_replace++;
1428     else
1429          dmc->cached_blocks++;
1430     cacheblk->cache_state = VALID | CACHEWRITEINPROG;
1431     cacheblk->dbn = bio->bi_sector;
1432     spin_unlock_irq(&dmc->cache_spin_lock);
1433     job = new_kcached_job(dmc, bio, index);
1434     if (unlikely(sysctl_flashcache_error_inject & WRITE_MISS_JOB_ALLOC_FAIL)) {
1435          if (job)
1436               flashcache_free_cache_job(job);
1437          job = NULL;
1438          sysctl_flashcache_error_inject &= ~WRITE_MISS_JOB_ALLOC_FAIL;
1439     }
1440     if (unlikely(job == NULL)) {
1441          /* 
1442          * We have a write miss, and can't allocate a job.
1443          * Since we dropped the spinlock, we have to drain any 
1444          * pending jobs.
1445          */
1446          DMERR("flashcache: Write (miss) failed ! Can't allocate memory for cache IO, block %lu", 
1447                cacheblk->dbn);
1448          flashcache_bio_endio(bio, -EIO);
1449          spin_lock_irq(&dmc->cache_spin_lock);
1450          dmc->cached_blocks--;
1451          cacheblk->cache_state &= ~VALID;
1452          cacheblk->cache_state |= INVALID;
1453          flashcache_free_pending_jobs(dmc, cacheblk, -EIO);
1454          cacheblk->cache_state &= ~(BLOCK_IO_INPROG);
1455          spin_unlock_irq(&dmc->cache_spin_lock);
1456     } else {
1457          job->action = WRITECACHE; 
1458          atomic_inc(&dmc->nr_jobs);
1459          dmc->ssd_writes++;
1460          dm_io_async_bvec(1, &job->cache, WRITE, 
1461                    bio->bi_io_vec + bio->bi_idx,
1462                    flashcache_io_callback, job);
1463          flashcache_unplug_device(dmc->cache_dev->bdev);
1464          flashcache_clean_set(dmc, index / dmc->assoc);
1465     }
1466}

大多数函数都已经是老朋友了。第1430行cache块设置了VALID标志,表示在有效数据,第1431行设置cache块对应的磁盘的bi_sector扇区。接着到第1460行下发写缓存请求,写缓存的情况与写命中的一样就不再继续跟进了。
下一节讲缓存超水位线写回磁盘。
原文地址:https://www.cnblogs.com/pangblog/p/3329090.html