驱动_IR驱动框架

驱动_IR驱动框架


平台:全志A40I

源码:Android 7.1  Linux 3.10

路径:linux-3.10/drivers/media/rc

接收驱动: sunxi-ir-dev.c
      rc-sunxi-keymaps.c

核心层 : rc-core : rc-main.o
      ir-raw.o


编码格式: ir-nec-decoder.c

                

键值映射表:rc-sunxi-keymaps.c

Android对应键值映射表:androidout argetproducta40-p1systemusrkeylayout      Generic.kl

             androiddevicesoftwinnera40-p1configs

 sunxi-ir-dev.c 


/* Copyright (C) 2014 ALLWINNERTECH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/irq.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <media/rc-core.h>
#include "sunxi-ir-rx.h"


#define SUNXI_IR_DRIVER_NAME "sunxi-rc-recv"
#define SUNXI_IR_DEVICE_NAME "sunxi_ir_recv"


#define RC5_UNIT 889000 /* ns */


DEFINE_IR_RAW_EVENT(rawir);
static struct sunxi_ir_data *ir_data;
static struct rc_dev *sunxi_rcdev;
static u32 is_receiving = 0;
static bool pluse_pre = 0;
static char ir_dev_name[] = "s_cir_rx";


static int debug_mask = 0;
#define dprintk(level_mask, fmt, arg...) if (unlikely(debug_mask & level_mask))
printk(fmt , ## arg)
#define IR_BASE (ir_data->reg_base)


static inline u8 ir_get_data(void)
{
return (u8)(readl(IR_BASE + IR_RXDAT_REG) & 0xff);
}


static inline u32 ir_get_intsta(void)
{
return (readl(IR_BASE + IR_RXINTS_REG));
}


static inline void ir_clr_intsta(u32 bitmap)
{
u32 tmp = readl(IR_BASE + IR_RXINTS_REG);


tmp &= ~0xff;
tmp |= bitmap&0xff;
writel(tmp, IR_BASE + IR_RXINTS_REG);
}


#ifdef CONFIG_OF
/* Translate OpenFirmware node properties into platform_data */
static struct of_device_id sunxi_ir_recv_of_match[] = {
{ .compatible = "allwinner,s_cir", },
{ .compatible = "allwinner,ir", },
{ },
};
MODULE_DEVICE_TABLE(of, sunxi_ir_recv_of_match);
#else /* !CONFIG_OF */
#endif
static void sunxi_ir_recv(u32 reg_data)
{
bool pluse_now = 0;
u32 ir_duration = 0;


pluse_now = reg_data >> 7; /* get the polarity */
ir_duration = reg_data & 0x7f; /* get duration, number of clocks */


if (pluse_pre == pluse_now) {
/* the signal sunperposition */
rawir.duration += ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
pluse_now, ir_duration);
} else {
#ifdef CONFIG_IR_RC5
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
rawir.pulse, rawir.duration);
if ((rawir.duration > (RC5_UNIT + RC5_UNIT/2))
&& (rawir.duration < (2*RC5_UNIT + RC5_UNIT/2))) {
rawir.duration = rawir.duration/2;
ir_raw_event_store(sunxi_rcdev, &rawir);
ir_raw_event_store(sunxi_rcdev, &rawir);
} else
ir_raw_event_store(sunxi_rcdev, &rawir);


rawir.pulse = pluse_now;
rawir.duration = ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
pluse_now, ir_duration);
#else
if (is_receiving) {
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
rawir.pulse, rawir.duration);
ir_raw_event_store(sunxi_rcdev, &rawir);
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
pluse_now, ir_duration);
} else {
/* get the first pluse signal */
rawir.pulse = pluse_now;
rawir.duration = ir_duration;
/* Since IR hardware will cut Active Threshold time,
* So just add comeback */
rawir.duration += ((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1);
is_receiving = 1;
dprintk(DEBUG_INT, "get frist pulse,add head %d !! ",
((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1));
dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
pluse_now, ir_duration);
}
#endif
pluse_pre = pluse_now;
}
}
static irqreturn_t sunxi_ir_recv_irq(int irq, void *dev_id)
{
u32 intsta,dcnt;
u32 i = 0;
u32 reg_data;


// printk("_____sunxi_ir_recv_irq ok ! ");

dprintk(DEBUG_INT, "IR RX IRQ Serve ");


intsta = ir_get_intsta();
ir_clr_intsta(intsta);


/* get the count of signal */
dcnt = (intsta>>8) & 0x7f;
dprintk(DEBUG_INT, "receive cnt :%d ", dcnt);

/* Read FIFO and fill the raw event */
for (i=0; i<dcnt; i++) {
/* get the data from fifo */
reg_data = ir_get_data();
/* Byte in FIFO format YXXXXXXX(B) Y:polarity(0:low level, 1:high level) X:Number of clocks */
sunxi_ir_recv(reg_data);
}


if (intsta & IR_RXINTS_RXPE) {
/* The last pulse can not call ir_raw_event_store()
* since miss invert level in above, manu call */
if (rawir.duration) {
rawir.duration *= IR_SIMPLE_UNIT;
dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
rawir.pulse, rawir.duration);
ir_raw_event_store(sunxi_rcdev, &rawir);
}
dprintk(DEBUG_INT, "handle raw data. ");
/* handle ther decoder theread */
ir_raw_event_handle(sunxi_rcdev);
is_receiving = 0;
pluse_pre = false;
}


if (intsta & IR_RXINTS_RXOF) {
/* FIFO Overflow */
pr_err("ir_rx_irq_service: Rx FIFO Overflow!! ");
is_receiving = 0;
pluse_pre = false;
}


return IRQ_HANDLED;
}



static void ir_mode_set(enum ir_mode set_mode)
{
u32 ctrl_reg = 0;


switch (set_mode) {
case CIR_MODE_ENABLE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_CIR_MODE;
break;
case IR_MODULE_ENABLE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_ENTIRE_ENABLE;
break;
case IR_BOTH_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_BOTH_PULSE;
break;
case IR_LOW_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_LOW_PULSE;
break;
case IR_HIGH_PULSE_MODE:
ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
ctrl_reg |= IR_HIGH_PULSE;
break;
default:
pr_err("ir_mode_set error!! ");
return;
}
writel(ctrl_reg, IR_BASE+IR_CTRL_REG);
}


static void ir_sample_config(enum ir_sample_config set_sample)
{
u32 sample_reg = 0;


sample_reg = readl(IR_BASE+IR_SPLCFG_REG);


switch (set_sample) {
case IR_SAMPLE_REG_CLEAR:
sample_reg = 0;
break;
case IR_CLK_SAMPLE:
sample_reg |= IR_SAMPLE_DEV;
break;
case IR_FILTER_TH:
#ifdef CONFIG_IR_RC5
sample_reg |= IR_RXFILT_VAL_RC5;
#else
sample_reg |= IR_RXFILT_VAL;
#endif
break;
case IR_IDLE_TH:
sample_reg |= IR_RXIDLE_VAL;
break;
case IR_ACTIVE_TH:
sample_reg |= IR_ACTIVE_T;
sample_reg |= IR_ACTIVE_T_C;
break;
case IR_ACTIVE_TH_SAMPLE:
sample_reg |= IR_ACTIVE_T_SAMPLE;
sample_reg &= ~IR_ACTIVE_T_C;
break;
default:
return;
}
writel(sample_reg, IR_BASE+IR_SPLCFG_REG);
}


static void ir_signal_invert(void)
{
u32 reg_value;
reg_value = 0x1<<2;
writel(reg_value, IR_BASE+IR_RXCFG_REG);
}


static void ir_irq_config(enum ir_irq_config set_irq)
{
u32 irq_reg = 0;


switch (set_irq) {
case IR_IRQ_STATUS_CLEAR:
writel(0xef, IR_BASE+IR_RXINTS_REG);
return;
case IR_IRQ_ENABLE:
irq_reg = readl(IR_BASE+IR_RXINTE_REG);
irq_reg |= IR_IRQ_STATUS;
break;
case IR_IRQ_FIFO_SIZE:
irq_reg = readl(IR_BASE+IR_RXINTE_REG);
irq_reg |= IR_FIFO_20;
break;
default:
return;
}
writel(irq_reg, IR_BASE+IR_RXINTE_REG);
}


static void ir_reg_cfg(void)
{
/* Enable IR Mode */
ir_mode_set(CIR_MODE_ENABLE);
/* Config IR Smaple Register */
ir_sample_config(IR_SAMPLE_REG_CLEAR);
ir_sample_config(IR_CLK_SAMPLE);
ir_sample_config(IR_FILTER_TH); /* Set Filter Threshold */
ir_sample_config(IR_IDLE_TH); /* Set Idle Threshold */


#ifdef CONFIG_IR_RC5
ir_sample_config(IR_ACTIVE_TH_SAMPLE); /* rc5 Set Active Threshold */
/* Invert Input Signal */
#else
ir_sample_config(IR_ACTIVE_TH); /* Set Active Threshold */
#endif
ir_signal_invert();
/* Clear All Rx Interrupt Status */
ir_irq_config(IR_IRQ_STATUS_CLEAR);
/* Set Rx Interrupt Enable */
ir_irq_config(IR_IRQ_ENABLE);
ir_irq_config(IR_IRQ_FIFO_SIZE); /* Rx FIFO Threshold = FIFOsz/2; */
/* for NEC decode which start with high level in the header so should
* use IR_HIGH_PULSE_MODE mode, but some ICs don't support this function
* therefor use IR_BOTH_PULSE_MODE mode as default
*/
ir_mode_set(IR_BOTH_PULSE_MODE);
/* Enable IR Module */
ir_mode_set(IR_MODULE_ENABLE);


return;
}


static void ir_clk_cfg(void)
{


unsigned long rate = 0;


rate = clk_get_rate(ir_data->pclk);
dprintk(DEBUG_INT, "%s: get ir parent rate %dHZ ", __func__, (__u32)rate);


if(clk_set_parent(ir_data->mclk, ir_data->pclk))
pr_err("%s: set ir_clk parent failed! ", __func__);


if (clk_set_rate(ir_data->mclk, IR_CLK)) {
pr_err("set ir clock freq to %d failed! ", IR_CLK);
}
rate = clk_get_rate(ir_data->mclk);
dprintk(DEBUG_INT, "%s: get ir_clk rate %dHZ ", __func__, (__u32)rate);


if (clk_prepare_enable(ir_data->mclk)) {
pr_err("try to enable ir_clk failed! ");
}


return;
}


static void ir_clk_uncfg(void)
{


if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
pr_err("ir_clk handle is invalid, just return! ");
return;
} else {
clk_disable_unprepare(ir_data->mclk);
clk_put(ir_data->mclk);
ir_data->mclk = NULL;
}


if(NULL == ir_data->pclk || IS_ERR(ir_data->pclk)) {
pr_err("ir_clk_source handle is invalid, just return! ");
return;
} else {
clk_put(ir_data->pclk);
ir_data->pclk = NULL;
}
return;
}


static void ir_setup(void)
{
dprintk(DEBUG_INIT, "ir_rx_setup: ir setup start!! ");


ir_clk_cfg();
ir_reg_cfg();


dprintk(DEBUG_INIT, "ir_rx_setup: ir setup end!! ");
return;
}


static int sunxi_ir_startup(struct platform_device *pdev)
{
struct device_node *np =NULL;
int i, ret = 0;
char addr_name[32];
const char *name = NULL;

ir_data = kzalloc(sizeof(*ir_data), GFP_KERNEL);
if (IS_ERR_OR_NULL(ir_data)) {
pr_err("ir_data: not enough memory for ir data ");
return -ENOMEM;
}


np = pdev->dev.of_node;

ir_data->reg_base= of_iomap(np, 0);
if (NULL == ir_data->reg_base) {
pr_err("%s:Failed to ioremap() io memory region. ",__func__);
ret = -EBUSY;
}else
dprintk(DEBUG_INIT, "ir base: %p ! ",ir_data->reg_base);
ir_data->irq_num= irq_of_parse_and_map(np, 0);
if (0 == ir_data->irq_num) {
pr_err("%s:Failed to map irq. ", __func__);
ret = -EBUSY;
}else
dprintk(DEBUG_INIT, "ir irq num: %d ! ",ir_data->irq_num);
ir_data->pclk = of_clk_get(np, 0);
ir_data->mclk = of_clk_get(np, 1);
if (NULL==ir_data->pclk||IS_ERR(ir_data->pclk)
||NULL==ir_data->mclk||IS_ERR(ir_data->mclk)) {
pr_err("%s:Failed to get clk. ", __func__);
ret = -EBUSY;
}
if (of_property_read_u32(np, "ir_addr_cnt", &ir_data->ir_addr_cnt)) {
pr_err("%s: get cir addr cnt failed", __func__);
ret = -EBUSY;
}
if(ir_data->ir_addr_cnt > MAX_ADDR_NUM)
ir_data->ir_addr_cnt = MAX_ADDR_NUM;
for(i = 0; i < ir_data->ir_addr_cnt; i++){
sprintf(addr_name, "ir_addr_code%d", i);
if (of_property_read_u32(np, (const char *)&addr_name,
&ir_data->ir_addr[i])) {
pr_err("node %s get failed! ", name);
ret = -EBUSY;
}
}
if (of_property_read_u32(np, "supply_vol", &ir_data->suply_vol)) {
pr_err("%s: get cir supply_vol failed", __func__);
}
if (of_property_read_string(np, "supply", &name)) {
pr_err("%s: cir have no power supply ", __func__);
} else {
ir_data->suply = regulator_get(NULL, name);
if(IS_ERR(ir_data->suply)){
pr_err("%s: cir get supply err ", __func__);
ir_data->suply = NULL;
}
}


return ret;
}


static int sunxi_ir_recv_probe(struct platform_device *pdev)
{
int rc;
// printk("_____sunxi_ir_recv_probe_____ ok ! ");
// struct input_dev *input;
dprintk(DEBUG_INIT, "sunxi-ir probe start ! ");


if (pdev->dev.of_node) {
/* get dt and sysconfig */
rc = sunxi_ir_startup(pdev);
}else{
pr_err("sunxi ir device tree err! ");
return -EBUSY;
}


if( rc < 0)
goto err_allocate_device;


sunxi_rcdev = rc_allocate_device();
if (!sunxi_rcdev) {
rc = -ENOMEM;
pr_err("rc dev allocate fail ! ");
goto err_allocate_device;
}


sunxi_rcdev->driver_type = RC_DRIVER_IR_RAW;
sunxi_rcdev->input_name = SUNXI_IR_DEVICE_NAME;
sunxi_rcdev->input_phys = SUNXI_IR_DEVICE_NAME "/input0";
sunxi_rcdev->input_id.bustype = BUS_HOST;
sunxi_rcdev->input_id.vendor = 0x0001;
sunxi_rcdev->input_id.product = 0x0001;
sunxi_rcdev->input_id.version = 0x0100;
sunxi_rcdev->dev.parent = &pdev->dev;
sunxi_rcdev->driver_name = SUNXI_IR_DRIVER_NAME;



input_set_capability(sunxi_rcdev->input_dev, EV_REL, REL_X);
input_set_capability(sunxi_rcdev->input_dev, EV_REL, REL_Y);
input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_LEFT);
input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_MIDDLE);
input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_RIGHT);

//input_set_abs_params(dev1, ABS_PRESSURE, 0, 127, 0, 0);


#ifdef CONFIG_IR_RC5
sunxi_rcdev->allowed_protos = (u64)RC_BIT_RC5;
#else
sunxi_rcdev->allowed_protos = (u64)RC_BIT_NEC;
#endif
sunxi_rcdev->map_name = RC_MAP_SUNXI;


init_rc_map_sunxi(ir_data->ir_addr, ir_data->ir_addr_cnt);
rc = rc_register_device(sunxi_rcdev);
if (rc < 0) {
dev_err(&pdev->dev, "failed to register rc device ");
goto err_register_rc_device;
}
sunxi_rcdev->enabled_protocols = sunxi_rcdev->allowed_protos;;
sunxi_rcdev->input_dev->dev.init_name = &ir_dev_name[0];


if (0 != rc) {
pr_err("%s: config ir rx pin err. ", __func__);
goto err_platfrom_device;
}


platform_set_drvdata(pdev, sunxi_rcdev);
ir_data->rcdev = sunxi_rcdev;
if(ir_data->suply){
rc = regulator_set_voltage(ir_data->suply, ir_data->suply_vol, ir_data->suply_vol);
rc |= regulator_enable(ir_data->suply);
}
ir_setup();

if (request_irq(ir_data->irq_num, sunxi_ir_recv_irq, IRQF_DISABLED, "RemoteIR_RX",
sunxi_rcdev)) {
pr_err("%s: request irq fail. ", __func__);
rc = -EBUSY;
goto err_request_irq;
}


/* enable here */
dprintk(DEBUG_INIT, "ir probe end! ");
return 0;


err_request_irq:
platform_set_drvdata(pdev, NULL);
rc_unregister_device(sunxi_rcdev);
sunxi_rcdev = NULL;
ir_clk_uncfg();
if(ir_data->suply){
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
err_platfrom_device:
exit_rc_map_sunxi();
err_register_rc_device:
rc_free_device(sunxi_rcdev);
err_allocate_device:
if(ir_data)
kfree(ir_data);
return rc;
}


static int sunxi_ir_recv_remove(struct platform_device *pdev)
{
free_irq(ir_data->irq_num, sunxi_rcdev);
ir_clk_uncfg();
platform_set_drvdata(pdev, NULL);
if(ir_data->suply){
regulator_disable(ir_data->suply);
regulator_put(ir_data->suply);
}
rc_unregister_device(sunxi_rcdev);
exit_rc_map_sunxi();
if(ir_data)
kfree(ir_data);
return 0;
}


#ifdef CONFIG_PM
static int sunxi_ir_recv_suspend(struct device *dev)
{
dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_suspend. ");


disable_irq_nosync(ir_data->irq_num);


if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
pr_err("ir_clk handle is invalid, just return! ");
return -1;
} else {
clk_disable_unprepare(ir_data->mclk);
}
return 0;
}


static int sunxi_ir_recv_resume(struct device *dev)
{
dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_resume. ");


clk_prepare_enable(ir_data->mclk);
ir_reg_cfg();
enable_irq(ir_data->irq_num);


return 0;
}


static const struct dev_pm_ops sunxi_ir_recv_pm_ops = {
.suspend = sunxi_ir_recv_suspend,
.resume = sunxi_ir_recv_resume,
};
#endif


static struct platform_driver sunxi_ir_recv_driver = {
.probe = sunxi_ir_recv_probe,
.remove = sunxi_ir_recv_remove,
.driver = {
.name = SUNXI_IR_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sunxi_ir_recv_of_match),
#ifdef CONFIG_PM
.pm = &sunxi_ir_recv_pm_ops,
#endif
},
};
module_platform_driver(sunxi_ir_recv_driver);
module_param_named(debug_mask, debug_mask, int, 0644);
MODULE_DESCRIPTION("SUNXI IR Receiver driver");
MODULE_AUTHOR("QIn");
MODULE_LICENSE("GPL v2");

 

 ir-nec-decoder.c

/* ir-nec-decoder.c - handle NEC IR Pulse/Space protocol
 *
 * Copyright (C) 2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 */

#include <linux/bitrev.h>
#include <linux/module.h>
#include "rc-core-priv.h"

#define NEC_NBITS        8
#define NEC_UNIT        562500  /* ns */
#define NEC_HEADER_PULSE    (16 * NEC_UNIT)
#define NECX_HEADER_PULSE    (8  * NEC_UNIT) /* Less common NEC variant */
#define NEC_HEADER_SPACE    (8  * NEC_UNIT)
#define NEC_REPEAT_SPACE    (4  * NEC_UNIT)
#define NEC_BIT_PULSE        (1  * NEC_UNIT)
#define NEC_BIT_0_SPACE        (1  * NEC_UNIT)
#define NEC_BIT_1_SPACE        (3  * NEC_UNIT)
#define    NEC_TRAILER_PULSE    (1  * NEC_UNIT)
#define    NEC_TRAILER_SPACE    (10 * NEC_UNIT) /* even longer in reality */
#define NECX_REPEAT_BITS    1

/***********  fsp  *************/
#define  fsp_head_first  5000000            
#define  fsp_head_end    5000000
#define  data_first      500000
#define  data_end_0      1500000
#define  data_end_1      500000
#define  fsp_end         1000000
/*******************************/


enum nec_state {
    STATE_INACTIVE,
    STATE_HEADER_SPACE,
    STATE_BIT_PULSE,
    STATE_BIT_SPACE,
    STATE_TRAILER_PULSE,
    STATE_TRAILER_SPACE,
};

/**
 * ir_nec_decode() - Decode one NEC pulse or space
 * @dev:    the struct rc_dev descriptor of the device
 * @duration:    the struct ir_raw_event descriptor of the pulse/space
 *
 * This function returns -EINVAL if the pulse violates the state machine
 */
static int ir_nec_decode(struct rc_dev *dev, struct ir_raw_event ev)
{
    struct nec_dec *data = &dev->raw->nec;
    u32 scancode;
    u8 address, not_address, command, not_command;
    bool send_32bits = false;

    if (!(dev->enabled_protocols & RC_BIT_NEC))
        return 0;

    if (!is_timing_event(ev)) {
        if (ev.reset)
            data->state = STATE_INACTIVE;
        return 0;
    }

    IR_dprintk(2, "NEC decode started at state %d (%uus %s)
",
           data->state, TO_US(ev.duration), TO_STR(ev.pulse));

    switch (data->state) {

    case STATE_INACTIVE:  //0          
//        printk("STATE_INACTIVE=0x%x  , time  =  %d
",STATE_INACTIVE,ev.duration);
        if (!ev.pulse)
            break;

        if (eq_margin(ev.duration, fsp_head_first, NEC_UNIT * 3)) {
            data->is_nec_x = false;
            data->necx_repeat = false;
        } else if (eq_margin(ev.duration, fsp_head_end, NEC_UNIT * 3))
            data->is_nec_x = true;
        else
            break;

        data->count = 0;
        data->state = STATE_HEADER_SPACE;
        return 0;

    case STATE_HEADER_SPACE:  //1 
//        printk("STATE_HEADER_SPACE   =   0x%x, time  =  %d
",STATE_HEADER_SPACE,ev.duration);
        if (ev.pulse)
            break;

        if (eq_margin(ev.duration, fsp_head_end, NEC_UNIT * 3)) {
            data->state = STATE_BIT_PULSE;
            return 0;
        } /* else if (eq_margin(ev.duration, NEC_REPEAT_SPACE, NEC_UNIT / 2)) {
            if (!dev->keypressed) {
                IR_dprintk(1, "Discarding last key repeat: event after key up
");
            } else {
                rc_repeat(dev);
                IR_dprintk(1, "Repeat last key
");
                data->state = STATE_TRAILER_PULSE;
            }
            return 0;
        } */ 

        break;

    case STATE_BIT_PULSE:  //2
//        printk("STATE_BIT_PULSE   =   0x%x, time  =  %d
",STATE_BIT_PULSE,ev.duration);
        if (!ev.pulse)
            break;

        if (eq_margin(ev.duration, data_first, NEC_UNIT * 2))  // 500
            break;

        data->state = STATE_BIT_SPACE;
        return 0;

    case STATE_BIT_SPACE:  //3
//        printk("STATE_BIT_SPACE   =   0x%x, time  =  %d
",STATE_BIT_SPACE,ev.duration);
        if (ev.pulse)
            break;

        if (data->necx_repeat && data->count == NECX_REPEAT_BITS &&
            geq_margin(ev.duration,
            1000, NEC_UNIT / 2)) {
                IR_dprintk(1, "Repeat last key
");
                rc_repeat(dev);
                data->state = STATE_INACTIVE;
                return 0;

        } else if (data->count > NECX_REPEAT_BITS)
            data->necx_repeat = false;

        data->bits <<= 1;
        if (eq_margin(ev.duration, data_end_1, 300000))
            data->bits |= 1;
        else if (!eq_margin(ev.duration, data_end_0, 300000))
            data->bits |= 0;
        data->count++;

        if (data->count == NEC_NBITS)    //32bit 
            data->state = STATE_TRAILER_PULSE;
        else
            data->state = STATE_BIT_PULSE;

        return 0;

    case STATE_TRAILER_PULSE:  //4
//        printk("SSTATE_TRAILER_PULSE   =   0x%x, time  =  %d
",STATE_TRAILER_PULSE,ev.duration);
        if (!ev.pulse)
            break;

        if (!eq_margin(ev.duration, fsp_end, 100000))
            break;

        data->state = STATE_TRAILER_SPACE;
        return 0;

    case STATE_TRAILER_SPACE:  //5
//        printk("STATE_TRAILER_SPACE   =   0x%x, time  =  %d
",STATE_TRAILER_SPACE,ev.duration);
        if (ev.pulse)
            break;

        //if (!geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2))
        //    break;
#if 0 
        address     =  (data->bits & 0xff000000) >> 24;
        not_address =  (data->bits & 0xff0000) >> 16;
        command     =  (data->bits & 0xff00) >> 8;
        not_command =  (data->bits & 0xff) >> 0;


        if((address ^ not_address) == 0xff){
            if((command ^ not_command) == 0xff){
                scancode = (address << 8)| command;
            }
        
            else{
                data->state = STATE_INACTIVE;    
                return 0;
            }
        }    
        else{
            data->state = STATE_INACTIVE;
            return 0;
        }
#endif        
        
        
        address = data->bits & 0x0f;
        command = (data->bits & 0xf0)>>4; 
        if((address ^ command) == 0x0f)
            scancode = data->bits &0xff;
        else
            data->state = STATE_INACTIVE;        
        
        
                
        printk("

_______________NEC scancode_______________ =  0x%x

",scancode);        
        

#if 0 
        address     = bitrev8((data->bits >> 24) & 0xff);
        not_address = bitrev8((data->bits >> 16) & 0xff);
        command        = bitrev8((data->bits >>  8) & 0xff);
        not_command = bitrev8((data->bits >>  0) & 0xff);

        if ((command ^ not_command) != 0xff) {
            IR_dprintk(1, "NEC checksum error: received 0x%08x
",
                   data->bits);
            send_32bits = true;
        }

        if (send_32bits) {
            /* NEC transport, but modified protocol, used by at
             * least Apple and TiVo remotes */
            scancode = data->bits;
            IR_dprintk(1, "NEC (modified) scancode 0x%08x
", scancode);
        } else if ((address ^ not_address) != 0xff) {
            /* Extended NEC */
            scancode = address     << 16 |
                   not_address <<  8 |
                   command;
            IR_dprintk(1, "NEC (Ext) scancode 0x%06x
", scancode);
        } else {
            /* Normal NEC */
            scancode = address << 8 | command;
            IR_dprintk(1, "NEC scancode 0x%04x
", scancode);
        }

        if (data->is_nec_x)
            data->necx_repeat = true;
#endif


        rc_keydown(dev, scancode, 0);
        data->state = STATE_INACTIVE;
        scancode = 0;
        return 0;
    }

    IR_dprintk(1, "NEC decode failed at count %d state %d (%uus %s)
",
           data->count, data->state, TO_US(ev.duration), TO_STR(ev.pulse));
    data->state = STATE_INACTIVE;
    return -EINVAL;
}

static struct ir_raw_handler nec_handler = {
    .protocols    = RC_BIT_NEC,
    .decode        = ir_nec_decode,
};

static int __init ir_nec_decode_init(void)
{
    ir_raw_handler_register(&nec_handler);

    printk(KERN_INFO "IR NEC protocol handler initialized
");
    return 0;
}

static void __exit ir_nec_decode_exit(void)
{
    ir_raw_handler_unregister(&nec_handler);
}

module_init(ir_nec_decode_init);
module_exit(ir_nec_decode_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("NEC IR protocol decoder");

 rc-sunxi-keymaps.c

/* Sunxi Remote Controller
 *
 * keymap imported from ir-keymaps.c
 *
 * Copyright (c) 2014 by allwinnertech
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <media/rc-map.h>
#include "sunxi-ir-rx.h"

#define MAX_ADDR_NUM (18)

static u32 match_addr[MAX_ADDR_NUM];
static u32 match_num;

static struct rc_map_table sunxi_nec_scan[] = {
//    { KEY_ESC, KEY_ESC },
#if 0
    { 0x0812, KEY_VOLUMEDOWN },
    { 0x0813, KEY_VOLUMEUP },    
    { 0x0850, KEY_PLAY },           /*********** FSP  begin   KEYCODE_MEDIA_PLAY *********/
    { 0x0851, KEY_PAUSE },        
    { 0x0852, KEY_BACK },    
    { 0x0853, KEY_FORWARD },
    { 0x0854, KEY_CLOSECD },
    { 0x0855, KEY_EJECTCD },     
    { 0x0856, KEY_EJECTCLOSECD },    
    { 0x0857, KEY_NEXTSONG },
    { 0x0858, KEY_PLAYPAUSE },
    { 0x0859, KEY_PREVIOUSSONG },     
    { 0x0860, KEY_STOPCD },
    { 0x0861, KEY_RECORD },     
    { 0x0862, KEY_REWIND },     
    { 0x0863, KEY_FASTFORWARD},    
    { 0x0864, KEY_STOP},    
#endif    
    
    { 0xE1, KEY_VOLUMEDOWN },
    { 0x1E, KEY_VOLUMEUP },    
    { 0xD2, KEY_PLAY },           /*********** FSP  begin   KEYCODE_MEDIA_PLAY *********/
    { 0x2D, KEY_PAUSE },        
    { 0xC3, KEY_BACK },    
    { 0x3C, KEY_FORWARD },
    { 0xB4, KEY_CLOSECD },
    { 0x4B, KEY_EJECTCD },     
    { 0xA5, KEY_EJECTCLOSECD },    
    { 0x5A, KEY_NEXTSONG },
    { 0xF0, KEY_PLAYPAUSE },
    { 0x0F, KEY_PREVIOUSSONG },     
    { 0x96, KEY_STOPCD },
//    { 0x69, KEY_RECORD },     
    { 0x87, KEY_REWIND },     
    { 0x78, KEY_FASTFORWARD},    
    { 0x69, KEY_STOP},    
    
};

static u32 sunxi_key_mapping(u32 code)
{
    u32 i,temp;
    temp = (code >> 8)&0xffff;
    for(i = 0; i < match_num; i++){
        if(match_addr[i] == temp)
            return code;
    }

    return KEY_RESERVED;
}

static struct rc_map_list sunxi_map = {
    .map = {
        .scan    = sunxi_nec_scan,
        .size    = ARRAY_SIZE(sunxi_nec_scan),
//        .mapping = sunxi_key_mapping,
        .rc_type = RC_TYPE_NEC,    /* Legacy IR type */
        .name    = RC_MAP_SUNXI,
    }
};

static void init_addr(u32 *addr, u32 addr_num)
{
    u32 *temp_addr = match_addr;
    if(addr_num > MAX_ADDR_NUM)
        addr_num = MAX_ADDR_NUM;
    match_num = addr_num;
    while(addr_num--){
        *temp_addr++ = (*addr++)&0xffff;
    }
    return;
}

int init_rc_map_sunxi(u32 *addr, u32 addr_num)
{
    init_addr(addr,addr_num);
    return rc_map_register(&sunxi_map);
}

void exit_rc_map_sunxi(void)
{
    rc_map_unregister(&sunxi_map);
}

 rc-main.c

/* rc-main.c - Remote Controller core module
 *
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 */

#include <media/rc-core.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include "rc-core-priv.h"

/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE    256
#define IR_TAB_MAX_SIZE    8192

/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

/* Used to keep track of known keymaps */
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);

static struct rc_map_list *seek_rc_map(const char *name)
{
    struct rc_map_list *map = NULL;

    spin_lock(&rc_map_lock);
    list_for_each_entry(map, &rc_map_list, list) {
        if (!strcmp(name, map->map.name)) {
            spin_unlock(&rc_map_lock);
            return map;
        }
    }
    spin_unlock(&rc_map_lock);

    return NULL;
}

struct rc_map *rc_map_get(const char *name)
{

    struct rc_map_list *map;

    map = seek_rc_map(name);
#ifdef MODULE
    if (!map) {
        int rc = request_module(name);
        if (rc < 0) {
            printk(KERN_ERR "Couldn't load IR keymap %s
", name);
            return NULL;
        }
        msleep(20);    /* Give some time for IR to register */

        map = seek_rc_map(name);
    }
#endif
    if (!map) {
        printk(KERN_ERR "IR keymap %s not found
", name);
        return NULL;
    }

    printk(KERN_INFO "Registered IR keymap %s
", map->map.name);

    return &map->map;
}
EXPORT_SYMBOL_GPL(rc_map_get);

int rc_map_register(struct rc_map_list *map)
{
    spin_lock(&rc_map_lock);
    list_add_tail(&map->list, &rc_map_list);
    spin_unlock(&rc_map_lock);
    return 0;
}
EXPORT_SYMBOL_GPL(rc_map_register);

void rc_map_unregister(struct rc_map_list *map)
{
    spin_lock(&rc_map_lock);
    list_del(&map->list);
    spin_unlock(&rc_map_lock);
}
EXPORT_SYMBOL_GPL(rc_map_unregister);


static struct rc_map_table empty[] = {
    { 0x2a, KEY_COFFEE },
};

static struct rc_map_list empty_map = {
    .map = {
        .scan    = empty,
        .size    = ARRAY_SIZE(empty),
        .rc_type = RC_TYPE_UNKNOWN,    /* Legacy IR type */
        .name    = RC_MAP_EMPTY,
    }
};

/**
 * ir_create_table() - initializes a scancode table
 * @rc_map:    the rc_map to initialize
 * @name:    name to assign to the table
 * @rc_type:    ir type to assign to the new table
 * @size:    initial size of the table
 * @return:    zero on success or a negative error code
 *
 * This routine will initialize the rc_map and will allocate
 * memory to hold at least the specified number of elements.
 */
static int ir_create_table(struct rc_map *rc_map,
               const char *name, u64 rc_type, size_t size)
{
    rc_map->name = name;
    rc_map->rc_type = rc_type;
    rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
    rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
    rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
    if (!rc_map->scan)
        return -ENOMEM;

    IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)
",
           rc_map->size, rc_map->alloc);
    return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
 * @rc_map:    the table whose mappings need to be freed
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
static void ir_free_table(struct rc_map *rc_map)
{
    rc_map->size = 0;
    if(rc_map->scan){
        kfree(rc_map->scan);
        rc_map->scan = NULL;
    }
}

/**
 * ir_resize_table() - resizes a scancode table if necessary
 * @rc_map:    the rc_map to resize
 * @gfp_flags:    gfp flags to use when allocating memory
 * @return:    zero on success or a negative error code
 *
 * This routine will shrink the rc_map if it has lots of
 * unused entries and grow it if it is full.
 */
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
{
    unsigned int oldalloc = rc_map->alloc;
    unsigned int newalloc = oldalloc;
    struct rc_map_table *oldscan = rc_map->scan;
    struct rc_map_table *newscan;

    if (rc_map->size == rc_map->len) {
        /* All entries in use -> grow keytable */
        if (rc_map->alloc >= IR_TAB_MAX_SIZE)
            return -ENOMEM;

        newalloc *= 2;
        IR_dprintk(1, "Growing table to %u bytes
", newalloc);
    }

    if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
        /* Less than 1/3 of entries in use -> shrink keytable */
        newalloc /= 2;
        IR_dprintk(1, "Shrinking table to %u bytes
", newalloc);
    }

    if (newalloc == oldalloc)
        return 0;

    newscan = kmalloc(newalloc, gfp_flags);
    if (!newscan) {
        IR_dprintk(1, "Failed to kmalloc %u bytes
", newalloc);
        return -ENOMEM;
    }

    memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
    rc_map->scan = newscan;
    rc_map->alloc = newalloc;
    rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
    kfree(oldscan);
    return 0;
}

/**
 * ir_update_mapping() - set a keycode in the scancode->keycode table
 * @dev:    the struct rc_dev device descriptor
 * @rc_map:    scancode table to be adjusted
 * @index:    index of the mapping that needs to be updated
 * @keycode:    the desired keycode
 * @return:    previous keycode assigned to the mapping
 *
 * This routine is used to update scancode->keycode mapping at given
 * position.
 */
static unsigned int ir_update_mapping(struct rc_dev *dev,
                      struct rc_map *rc_map,
                      unsigned int index,
                      unsigned int new_keycode)
{
    int old_keycode = rc_map->scan[index].keycode;
    int i;

    /* Did the user wish to remove the mapping? */
    if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
        IR_dprintk(1, "#%d: Deleting scan 0x%04x
",
               index, rc_map->scan[index].scancode);
        rc_map->len--;
        memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
            (rc_map->len - index) * sizeof(struct rc_map_table));
    } else {
        IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x
",
               index,
               old_keycode == KEY_RESERVED ? "New" : "Replacing",
               rc_map->scan[index].scancode, new_keycode);
        rc_map->scan[index].keycode = new_keycode;
        __set_bit(new_keycode, dev->input_dev->keybit);
    }

    if (old_keycode != KEY_RESERVED) {
        /* A previous mapping was updated... */
        __clear_bit(old_keycode, dev->input_dev->keybit);
        /* ... but another scancode might use the same keycode */
        for (i = 0; i < rc_map->len; i++) {
            if (rc_map->scan[i].keycode == old_keycode) {
                __set_bit(old_keycode, dev->input_dev->keybit);
                break;
            }
        }

        /* Possibly shrink the keytable, failure is not a problem */
        ir_resize_table(rc_map, GFP_ATOMIC);
    }

    return old_keycode;
}

/**
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 * @dev:    the struct rc_dev device descriptor
 * @rc_map:    scancode table to be searched
 * @scancode:    the desired scancode
 * @resize:    controls whether we allowed to resize the table to
 *        accommodate not yet present scancodes
 * @return:    index of the mapping containing scancode in question
 *        or -1U in case of failure.
 *
 * This routine is used to locate given scancode in rc_map.
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
 */
static unsigned int ir_establish_scancode(struct rc_dev *dev,
                      struct rc_map *rc_map,
                      unsigned int scancode,
                      bool resize)
{
    unsigned int i;

    /*
     * Unfortunately, some hardware-based IR decoders don't provide
     * all bits for the complete IR code. In general, they provide only
     * the command part of the IR code. Yet, as it is possible to replace
     * the provided IR with another one, it is needed to allow loading
     * IR tables from other remotes. So, we support specifying a mask to
     * indicate the valid bits of the scancodes.
     */
    if (dev->scanmask)
        scancode &= dev->scanmask;

    /* First check if we already have a mapping for this ir command */
    for (i = 0; i < rc_map->len; i++) {
        if (rc_map->scan[i].scancode == scancode)
            return i;

        /* Keytable is sorted from lowest to highest scancode */
        if (rc_map->scan[i].scancode >= scancode)
            break;
    }

    /* No previous mapping found, we might need to grow the table */
    if (rc_map->size == rc_map->len) {
        if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
            return -1U;
    }

    /* i is the proper index to insert our new keycode */
    if (i < rc_map->len)
        memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
            (rc_map->len - i) * sizeof(struct rc_map_table));
    rc_map->scan[i].scancode = scancode;
    rc_map->scan[i].keycode = KEY_RESERVED;
    rc_map->len++;

    return i;
}

/**
 * ir_setkeycode() - set a keycode in the scancode->keycode table
 * @idev:    the struct input_dev device descriptor
 * @scancode:    the desired scancode
 * @keycode:    result
 * @return:    -EINVAL if the keycode could not be inserted, otherwise zero.
 *
 * This routine is used to handle evdev EVIOCSKEY ioctl.
 */
static int ir_setkeycode(struct input_dev *idev,
             const struct input_keymap_entry *ke,
             unsigned int *old_keycode)
{
    struct rc_dev *rdev = input_get_drvdata(idev);
    struct rc_map *rc_map = &rdev->rc_map;
    unsigned int index;
    unsigned int scancode;
    int retval = 0;
    unsigned long flags;

    spin_lock_irqsave(&rc_map->lock, flags);

    if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
        index = ke->index;
        if (index >= rc_map->len) {
            retval = -EINVAL;
            goto out;
        }
    } else {
        retval = input_scancode_to_scalar(ke, &scancode);
        if (retval)
            goto out;

        index = ir_establish_scancode(rdev, rc_map, scancode, true);
        if (index >= rc_map->len) {
            retval = -ENOMEM;
            goto out;
        }
    }

    *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);

out:
    spin_unlock_irqrestore(&rc_map->lock, flags);
    return retval;
}

/**
 * ir_setkeytable() - sets several entries in the scancode->keycode table
 * @dev:    the struct rc_dev device descriptor
 * @to:        the struct rc_map to copy entries to
 * @from:    the struct rc_map to copy entries from
 * @return:    -ENOMEM if all keycodes could not be inserted, otherwise zero.
 *
 * This routine is used to handle table initialization.
 */
static int ir_setkeytable(struct rc_dev *dev,
              const struct rc_map *from)
{
    struct rc_map *rc_map = &dev->rc_map;
    unsigned int i, index;
    int rc;

    rc = ir_create_table(rc_map, from->name,
                 from->rc_type, from->size);
    if (rc)
        return rc;

    IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)
",
           rc_map->size, rc_map->alloc);

    for (i = 0; i < from->size; i++) {
        index = ir_establish_scancode(dev, rc_map,
                          from->scan[i].scancode, false);
        if (index >= rc_map->len) {
            rc = -ENOMEM;
            break;
        }

        ir_update_mapping(dev, rc_map, index,
                  from->scan[i].keycode);
    }

    if (rc)
        ir_free_table(rc_map);

    return rc;
}

static int ir_setkeytable_mapping(struct rc_dev *dev,
              const struct rc_map *from)
{
    struct rc_map *rc_map = &dev->rc_map;

    if(from->mapping)
        rc_map->mapping = from->mapping;;

    return 0;
}

/**
 * ir_lookup_by_scancode() - locate mapping by scancode
 * @rc_map:    the struct rc_map to search
 * @scancode:    scancode to look for in the table
 * @return:    index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
                      unsigned int scancode)
{
    int start = 0;
    int end = rc_map->len - 1;
    int mid;

    while (start <= end) {
        mid = (start + end) / 2;
        if (rc_map->scan[mid].scancode < scancode)
            start = mid + 1;
        else if (rc_map->scan[mid].scancode > scancode)
            end = mid - 1;
        else
            return mid;
    }

    return -1U;
}

/**
 * ir_getkeycode() - get a keycode from the scancode->keycode table
 * @idev:    the struct input_dev device descriptor
 * @scancode:    the desired scancode
 * @keycode:    used to return the keycode, if found, or KEY_RESERVED
 * @return:    always returns zero.
 *
 * This routine is used to handle evdev EVIOCGKEY ioctl.
 */
static int ir_getkeycode(struct input_dev *idev,
             struct input_keymap_entry *ke)
{
    struct rc_dev *rdev = input_get_drvdata(idev);
    struct rc_map *rc_map = &rdev->rc_map;
    struct rc_map_table *entry;
    unsigned long flags;
    unsigned int index;
    unsigned int scancode;
    int retval;

    spin_lock_irqsave(&rc_map->lock, flags);

    if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
        index = ke->index;
    } else {
        retval = input_scancode_to_scalar(ke, &scancode);
        if (retval)
            goto out;

        index = ir_lookup_by_scancode(rc_map, scancode);
    }

    if (index < rc_map->len) {
        entry = &rc_map->scan[index];

        ke->index = index;
        ke->keycode = entry->keycode;
        ke->len = sizeof(entry->scancode);
        memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

    } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
        /*
         * We do not really know the valid range of scancodes
         * so let's respond with KEY_RESERVED to anything we
         * do not have mapping for [yet].
         */
        ke->index = index;
        ke->keycode = KEY_RESERVED;
    } else {
        retval = -EINVAL;
        goto out;
    }

    retval = 0;

out:
    spin_unlock_irqrestore(&rc_map->lock, flags);
    return retval;
}

/**
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 * @dev:    the struct rc_dev descriptor of the device
 * @scancode:    the scancode to look for
 * @return:    the corresponding keycode, or KEY_RESERVED
 *
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
 */
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
{
    struct rc_map *rc_map = &dev->rc_map;
    unsigned int keycode;
    unsigned int index;
    unsigned long flags;

    spin_lock_irqsave(&rc_map->lock, flags);
    if(rc_map->mapping){
        keycode = rc_map->mapping(scancode);
    }else{
        index = ir_lookup_by_scancode(rc_map, scancode);
        keycode = index < rc_map->len ?
                rc_map->scan[index].keycode : KEY_RESERVED;
    }
    spin_unlock_irqrestore(&rc_map->lock, flags);

    if (keycode != KEY_RESERVED)
        IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x
",
               dev->input_name, scancode, keycode);

    return keycode;
}
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);

/**
 * ir_do_keyup() - internal function to signal the release of a keypress
 * @dev:    the struct rc_dev descriptor of the device
 * @sync:    whether or not to call input_sync
 *
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
 */
static void ir_do_keyup(struct rc_dev *dev, bool sync)
{
    if (!dev->keypressed)
        return;

    IR_dprintk(1, "keyup key 0x%04x
", dev->last_keycode);
    input_report_key(dev->input_dev, dev->last_keycode, 0);
    if (sync)
        input_sync(dev->input_dev);
    dev->keypressed = false;
}

/**
 * rc_keyup() - signals the release of a keypress
 * @dev:    the struct rc_dev descriptor of the device
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
void rc_keyup(struct rc_dev *dev)
{
    unsigned long flags;

    spin_lock_irqsave(&dev->keylock, flags);
    ir_do_keyup(dev, true);
    spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keyup);

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
 * @cookie:    a pointer to the struct rc_dev for the device
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
 */
static void ir_timer_keyup(unsigned long cookie)
{
    struct rc_dev *dev = (struct rc_dev *)cookie;
    unsigned long flags;

    /*
     * ir->keyup_jiffies is used to prevent a race condition if a
     * hardware interrupt occurs at this point and the keyup timer
     * event is moved further into the future as a result.
     *
     * The timer will then be reactivated and this function called
     * again in the future. We need to exit gracefully in that case
     * to allow the input subsystem to do its auto-repeat magic or
     * a keyup event might follow immediately after the keydown.
     */
    spin_lock_irqsave(&dev->keylock, flags);
    if (time_is_before_eq_jiffies(dev->keyup_jiffies))
        ir_do_keyup(dev, true);
    spin_unlock_irqrestore(&dev->keylock, flags);
}

/**
 * rc_repeat() - signals that a key is still pressed
 * @dev:    the struct rc_dev descriptor of the device
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
void rc_repeat(struct rc_dev *dev)
{
    unsigned long flags;

    spin_lock_irqsave(&dev->keylock, flags);
    
//    input_event(dev->input_dev, EV_ABS, ABS_X, dev->last_scancode);    
    input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
//    input_event(dev->input_dev, EV_REL, REL_X, dev->last_scancode);
    input_sync(dev->input_dev);

    if (!dev->keypressed)
        goto out;

    dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
    mod_timer(&dev->timer_keyup, dev->keyup_jiffies);

out:
    spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_repeat);

/**
 * ir_do_keydown() - internal function to process a keypress
 * @dev:    the struct rc_dev descriptor of the device
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
 *
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
 */
static void ir_do_keydown(struct rc_dev *dev, int scancode,
              u32 keycode, u8 toggle)
{
    bool new_event = !dev->keypressed ||
             dev->last_scancode != scancode ||
             dev->last_toggle != toggle;

    if (new_event && dev->keypressed)
        ir_do_keyup(dev, false);


/*
    switch(scancode){
        send_user_event(""KEYCODE_BREAK=128"");
        case 0xD2:    input_event(dev->input_dev, EV_KEY, KEY_PLAY, scancode);
                    break;
        
        case 0x2D:    input_event(dev->input_dev, EV_KEY, KEY_PAUSE, scancode);
                    break;
            
        default:    break;        
        
    }
*/

    input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
    input_event(dev->input_dev, EV_REL, REL_X, scancode);
//    input_event(dev->input_dev, EV_ABS, ABS_X, scancode);


    if (new_event && keycode != KEY_RESERVED) {
        /* Register a keypress */
        dev->keypressed = true;
        dev->last_scancode = scancode;
        dev->last_toggle = toggle;
        dev->last_keycode = keycode;

        IR_dprintk(1, "%s: key down event, "
               "key 0x%04x, scancode 0x%04x
",
               dev->input_name, keycode, scancode);
        input_report_key(dev->input_dev, keycode, 1);
        input_report_rel(dev->input_dev, REL_X, scancode);
    }


//    input_report_rel(dev->input_dev, REL_X, scancode);

    input_sync(dev->input_dev);
}

/**
 * rc_keydown() - generates input event for a key press
 * @dev:    the struct rc_dev descriptor of the device
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
 * This routine is used to signal that a key has been pressed on the
 * remote control.
 */
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
{
    unsigned long flags;
    u32 keycode = rc_g_keycode_from_table(dev, scancode);

    spin_lock_irqsave(&dev->keylock, flags);
    ir_do_keydown(dev, scancode, keycode, toggle);



//    __set_bit(ABS_X, gt811_dev->inputdev->absbit);


/*
    input_event(dev->input_dev, EV_REL, REL_X, scancode);
    input_report_rel(dev->input_dev, REL_X, scancode);
    input_sync(dev->input_dev);
*/
/*
    input_event(dev->input_dev, EV_ABS, ABS_X, scancode);
    input_report_rel(dev->input_dev, ABS_X, scancode);
    input_sync(dev->input_dev);    
*/    
    
    printk("rc_keydown  success !
");


    if (dev->keypressed) {
        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
    }
    spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown);

/**
 * rc_keydown_notimeout() - generates input event for a key press without
 *                          an automatic keyup event at a later time
 * @dev:    the struct rc_dev descriptor of the device
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
 * This routine is used to signal that a key has been pressed on the
 * remote control. The driver must manually call rc_keyup() at a later stage.
 */
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
{
    unsigned long flags;
    u32 keycode = rc_g_keycode_from_table(dev, scancode);

    spin_lock_irqsave(&dev->keylock, flags);
    ir_do_keydown(dev, scancode, keycode, toggle);
    spin_unlock_irqrestore(&dev->keylock, flags);
}
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);

static int ir_open(struct input_dev *idev)
{
    struct rc_dev *rdev = input_get_drvdata(idev);

    return rdev->open(rdev);
}

static void ir_close(struct input_dev *idev)
{
    struct rc_dev *rdev = input_get_drvdata(idev);

     if (rdev)
        rdev->close(rdev);
}

/* class for /sys/class/rc */
static char *rc_devnode(struct device *dev, umode_t *mode)
{
    return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

static struct class rc_class = {
    .name        = "rc",
    .devnode    = rc_devnode,
};

/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
static struct {
    u64    type;
    char    *name;
} proto_names[] = {
    { RC_BIT_NONE,        "none"        },
    { RC_BIT_OTHER,        "other"        },
    { RC_BIT_UNKNOWN,    "unknown"    },
    { RC_BIT_RC5 |
      RC_BIT_RC5X,        "rc-5"        },
    { RC_BIT_NEC,        "nec"        },
    { RC_BIT_RC6_0 |
      RC_BIT_RC6_6A_20 |
      RC_BIT_RC6_6A_24 |
      RC_BIT_RC6_6A_32 |
      RC_BIT_RC6_MCE,    "rc-6"        },
    { RC_BIT_JVC,        "jvc"        },
    { RC_BIT_SONY12 |
      RC_BIT_SONY15 |
      RC_BIT_SONY20,    "sony"        },
    { RC_BIT_RC5_SZ,    "rc-5-sz"    },
    { RC_BIT_SANYO,        "sanyo"        },
    { RC_BIT_MCE_KBD,    "mce_kbd"    },
    { RC_BIT_LIRC,        "lirc"        },
};

/**
 * show_protocols() - shows the current IR protocol(s)
 * @device:    the device descriptor
 * @mattr:    the device attribute struct (unused)
 * @buf:    a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/protocols.
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t show_protocols(struct device *device,
                  struct device_attribute *mattr, char *buf)
{
    struct rc_dev *dev = to_rc_dev(device);
    u64 allowed, enabled;
    char *tmp = buf;
    int i;

    /* Device is being removed */
    if (!dev)
        return -EINVAL;

    mutex_lock(&dev->lock);

    enabled = dev->enabled_protocols;
    if (dev->driver_type == RC_DRIVER_SCANCODE)
        allowed = dev->allowed_protos;
    else if (dev->raw)
        allowed = ir_raw_get_allowed_protocols();
    else {
        mutex_unlock(&dev->lock);
        return -ENODEV;
    }

    IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx
",
           (long long)allowed,
           (long long)enabled);

    for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
        if (allowed & enabled & proto_names[i].type)
            tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
        else if (allowed & proto_names[i].type)
            tmp += sprintf(tmp, "%s ", proto_names[i].name);

        if (allowed & proto_names[i].type)
            allowed &= ~proto_names[i].type;
    }

    if (tmp != buf)
        tmp--;
    *tmp = '
';

    mutex_unlock(&dev->lock);

    return tmp + 1 - buf;
}

/**
 * store_protocols() - changes the current IR protocol(s)
 * @device:    the device descriptor
 * @mattr:    the device attribute struct (unused)
 * @buf:    a pointer to the input buffer
 * @len:    length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/protocols.
 * Writing "+proto" will add a protocol to the list of enabled protocols.
 * Writing "-proto" will remove a protocol from the list of enabled protocols.
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
 * is used, otherwise @len.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
                   struct device_attribute *mattr,
                   const char *data,
                   size_t len)
{
    struct rc_dev *dev = to_rc_dev(device);
    bool enable, disable;
    const char *tmp;
    u64 type;
    u64 mask;
    int rc, i, count = 0;
    ssize_t ret;

    /* Device is being removed */
    if (!dev)
        return -EINVAL;

    mutex_lock(&dev->lock);

    if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
        IR_dprintk(1, "Protocol switching not supported
");
        ret = -EINVAL;
        goto out;
    }
    type = dev->enabled_protocols;

    while ((tmp = strsep((char **) &data, " 
")) != NULL) {
        if (!*tmp)
            break;

        if (*tmp == '+') {
            enable = true;
            disable = false;
            tmp++;
        } else if (*tmp == '-') {
            enable = false;
            disable = true;
            tmp++;
        } else {
            enable = false;
            disable = false;
        }

        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
            if (!strcasecmp(tmp, proto_names[i].name)) {
                mask = proto_names[i].type;
                break;
            }
        }

        if (i == ARRAY_SIZE(proto_names)) {
            IR_dprintk(1, "Unknown protocol: '%s'
", tmp);
            ret = -EINVAL;
            goto out;
        }

        count++;

        if (enable)
            type |= mask;
        else if (disable)
            type &= ~mask;
        else
            type = mask;
    }

    if (!count) {
        IR_dprintk(1, "Protocol not specified
");
        ret = -EINVAL;
        goto out;
    }

    if (dev->change_protocol) {
        rc = dev->change_protocol(dev, &type);
        if (rc < 0) {
            IR_dprintk(1, "Error setting protocols to 0x%llx
",
                   (long long)type);
            ret = -EINVAL;
            goto out;
        }
    }

    dev->enabled_protocols = type;
    IR_dprintk(1, "Current protocol(s): 0x%llx
",
           (long long)type);

    ret = len;

out:
    mutex_unlock(&dev->lock);
    return ret;
}

static void rc_dev_release(struct device *device)
{
}

#define ADD_HOTPLUG_VAR(fmt, val...)                    
    do {                                
        int err = add_uevent_var(env, fmt, val);        
        if (err)                        
            return err;                    
    } while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
    struct rc_dev *dev = to_rc_dev(device);

    if (!dev || !dev->input_dev)
        return -ENODEV;

    if (dev->rc_map.name)
        ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
    if (dev->driver_name)
        ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);

    return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
           show_protocols, store_protocols);

static struct attribute *rc_dev_attrs[] = {
    &dev_attr_protocols.attr,
    NULL,
};

static struct attribute_group rc_dev_attr_grp = {
    .attrs    = rc_dev_attrs,
};

static const struct attribute_group *rc_dev_attr_groups[] = {
    &rc_dev_attr_grp,
    NULL
};

static struct device_type rc_dev_type = {
    .groups        = rc_dev_attr_groups,
    .release    = rc_dev_release,
    .uevent        = rc_dev_uevent,
};

struct rc_dev *rc_allocate_device(void)
{
    struct rc_dev *dev;

    dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    if (!dev)
        return NULL;

    dev->input_dev = input_allocate_device();
    if (!dev->input_dev) {
        kfree(dev);
        return NULL;
    }

    dev->input_dev->getkeycode = ir_getkeycode;
    dev->input_dev->setkeycode = ir_setkeycode;
    input_set_drvdata(dev->input_dev, dev);

    spin_lock_init(&dev->rc_map.lock);
    spin_lock_init(&dev->keylock);
    mutex_init(&dev->lock);
    setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);

    dev->dev.type = &rc_dev_type;
    dev->dev.class = &rc_class;
    device_initialize(&dev->dev);

    __module_get(THIS_MODULE);
    return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
{
    if (!dev)
        return;

    if (dev->input_dev)
        input_free_device(dev->input_dev);

    put_device(&dev->dev);

    kfree(dev);
    module_put(THIS_MODULE);
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
    static bool raw_init = false; /* raw decoders loaded? */
    static atomic_t devno = ATOMIC_INIT(0);
    struct rc_map *rc_map;
    const char *path;
    int rc;

    if (!dev || !dev->map_name)
        return -EINVAL;

    rc_map = rc_map_get(dev->map_name);
    if (!rc_map)
        rc_map = rc_map_get(RC_MAP_EMPTY);
    if (!rc_map)
        return -EINVAL;
    if ((!rc_map->mapping) && (!rc_map->scan || rc_map->size == 0))
        return -EINVAL;

    set_bit(EV_KEY, dev->input_dev->evbit);
    set_bit(EV_REP, dev->input_dev->evbit);
    set_bit(EV_MSC, dev->input_dev->evbit);
    set_bit(MSC_SCAN, dev->input_dev->mscbit);
//    set_bit(EV_REL, dev->input_dev->evbit);    
//    set_bit(EV_ABS, dev->input_dev->absbit);
//    set_bit(EV_REL, dev->input_dev->relbit);    

//    __set_bit(EV_REL, dev->input_dev->relbit);

    if (dev->open)
        dev->input_dev->open = ir_open;
    if (dev->close)
        dev->input_dev->close = ir_close;

    /*
     * Take the lock here, as the device sysfs node will appear
     * when device_add() is called, which may trigger an ir-keytable udev
     * rule, which will in turn call show_protocols and access
     * dev->enabled_protocols before it has been initialized.
     */
    mutex_lock(&dev->lock);

    dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
    dev_set_name(&dev->dev, "rc%ld", dev->devno);
    dev_set_drvdata(&dev->dev, dev);
    rc = device_add(&dev->dev);
    if (rc)
        goto out_unlock;

    ir_setkeytable_mapping(dev, rc_map);

    rc = ir_setkeytable(dev, rc_map);
    if (rc)
        goto out_dev;

    dev->input_dev->dev.parent = &dev->dev;
    memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
    dev->input_dev->phys = dev->input_phys;
    dev->input_dev->name = dev->input_name;
    rc = input_register_device(dev->input_dev);
    if (rc)
        goto out_table;

    /*
     * Default delay of 250ms is too short for some protocols, especially
     * since the timeout is currently set to 250ms. Increase it to 500ms,
     * to avoid wrong repetition of the keycodes. Note that this must be
     * set after the call to input_register_device().
     */
    dev->input_dev->rep[REP_DELAY] = 500;

    /*
     * As a repeat event on protocols like RC-5 and NEC take as long as
     * 110/114ms, using 33ms as a repeat period is not the right thing
     * to do.
     */
    dev->input_dev->rep[REP_PERIOD] = 125;

    path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
    printk(KERN_INFO "%s: %s as %s
",
        dev_name(&dev->dev),
        dev->input_name ? dev->input_name : "Unspecified device",
        path ? path : "N/A");
    kfree(path);

    if (dev->driver_type == RC_DRIVER_IR_RAW) {
        /* Load raw decoders, if they aren't already */
        if (!raw_init) {
            IR_dprintk(1, "Loading raw decoders
");
            ir_raw_init();
            raw_init = true;
        }
        rc = ir_raw_event_register(dev);
        if (rc < 0)
            goto out_input;
    }

    if (dev->change_protocol) {
        u64 rc_type = (1 << rc_map->rc_type);
        rc = dev->change_protocol(dev, &rc_type);
        if (rc < 0)
            goto out_raw;
        dev->enabled_protocols = rc_type;
    }

    mutex_unlock(&dev->lock);

    IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)
",
           dev->devno,
           dev->driver_name ? dev->driver_name : "unknown",
           rc_map->name ? rc_map->name : "unknown",
           dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

    return 0;

out_raw:
    if (dev->driver_type == RC_DRIVER_IR_RAW)
        ir_raw_event_unregister(dev);
out_input:
    input_unregister_device(dev->input_dev);
    dev->input_dev = NULL;
out_table:
    ir_free_table(&dev->rc_map);
out_dev:
    device_del(&dev->dev);
out_unlock:
    mutex_unlock(&dev->lock);
    return rc;
}
EXPORT_SYMBOL_GPL(rc_register_device);

void rc_unregister_device(struct rc_dev *dev)
{
    if (!dev)
        return;

    del_timer_sync(&dev->timer_keyup);

    if (dev->driver_type == RC_DRIVER_IR_RAW)
        ir_raw_event_unregister(dev);

    /* Freeing the table should also call the stop callback */
    ir_free_table(&dev->rc_map);
    IR_dprintk(1, "Freed keycode table
");

    input_unregister_device(dev->input_dev);
    dev->input_dev = NULL;

    device_del(&dev->dev);

    rc_free_device(dev);
}

EXPORT_SYMBOL_GPL(rc_unregister_device);

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

static int __init rc_core_init(void)
{
    int rc = class_register(&rc_class);
    if (rc) {
        printk(KERN_ERR "rc_core: unable to register rc class
");
        return rc;
    }

    rc_map_register(&empty_map);

    return 0;
}

static void __exit rc_core_exit(void)
{
    class_unregister(&rc_class);
    rc_map_unregister(&empty_map);
}

subsys_initcall(rc_core_init);
module_exit(rc_core_exit);

int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");

笔记:


https://www.cnblogs.com/zzb-Dream-90Time/p/7808518.html

 

原文地址:https://www.cnblogs.com/panda-w/p/12148629.html