段描述符表(GDT+LDT)的有感

【0】写在前面

要知道,在汇编中,代码的装入顺序决定了在内存中的地址位置。所有的代码或者数据都在硬盘上,当调试或者启动的时候,加载到内存;当需要对数据进行处理的时候,我们通过将数据从内存载入到registers 通过cpu来进行处理的。
这里写图片描述
这里写图片描述

【1】初始化各种段描述符

初始化 32 位代码段描述符 为例

【2】有感

首先:要先定义这段描述符(占据内存空间),然后向里面传入真正处理数据的地址;

2.1 定义阶段

为什么 LABEL_GDT 必须跟在最前面呢?

  • 因为它的地址要作为段的基地址,而选择子的地址作为偏移地址来定位某个段。你想想你C语言的数组,是不是这样排列的。首先数组首地址在开头,然后后面存储的是元素的地址,呵呵。碉堡了。一句话说完;
    只要吧LABEL_GDT放在某段内存的起始位置,跟在它后面的哪些段描述符(内存地址),都可以作为GDT中的元素(或者称为表项),这就是一个表(或者数组)的定义由来。

    LABEL_GDT:         Descriptor       0,                 0, 0         ; 空描述符
    

    LABEL_DESC_CODE32: Descriptor 0, SegCode32Len - 1, DA_C + DA_32 ; 非一致代码段, 32

2.2 定义选择子

说白了,选择子就是某个段相对于全局描述符GDT的偏移地址; 当我们知道GDT的地址后,将其作为基地址,并将选择子作为偏移地址,来定位该段描述符的。

; GDT 选择子
SelectorCode32      equ LABEL_DESC_CODE32   - LABEL_GDT

2.3 往段描述符空间装干货地址

干货就是真正的处理数据的代码。(如向屏幕显示打印字符)

[SECTION .s16]
[BITS   16]
LABEL_BEGIN:
 ;start point: jmp会跳到这里
mov ax,trong
mov ax,GdtLen
mov ax, cs
mov ds, ax  
mov es, ax
mov ss, ax
mov sp, 0100h

; 初始化 32 位代码段描述符(装干货地址)
xor ax, ax
mov ax, cs
shl ax, 4
add ax, LABEL_SEG_CODE32
mov word [LABEL_DESC_CODE32 + 2], ax
shr ax, 16
mov byte [LABEL_DESC_CODE32 + 4], al
mov byte [LABEL_DESC_CODE32 + 7], ah

; 为加载 GDTR 作准备(将全局描述符表GDT装入全局描述符表寄存器GDTR,目的是跳转的时候,程序要到GDTR取段基地址)
xor ax, ax
mov ax, ds
shl ax, 4
add ax, LABEL_GDT       ; eax <- gdt 基地址
mov dword [GdtPtr + 2], eax ; [GdtPtr + 2] <- gdt 基地址

; 加载 GDTR (正式加载到全局描述符表寄存器)
lgdt    [GdtPtr]

; 关中断
cli

; 打开地址线A20
    in  al, 92h
or  al, 00000010b
out 92h, al

; 准备切换到保护模式
mov eax, cr0
or  eax, 1
mov cr0, eax

; 真正进入保护模式 (这里就要查询GDTR了,跳转到干货地址)
jmp dword SelectorCode32:0  ; 执行这一句会把 SelectorCode32 装入 cs,
                ; 并跳转到 Code32Selector:0  处
; END of [SECTION .s16]

2.4 真正的干货

[SECTION .s32]; 32 位代码段. 由实模式跳入.
[BITS   32]
LABEL_SEG_CODE32:
mov ax, SelectorData
mov ds, ax          ; 数据段选择子
mov ax, SelectorVideo
mov gs, ax          ; 视频段选择子
mov ax, SelectorStack
mov ss, ax          ; 堆栈段选择子
mov esp, TopOfStack
。。。。。。

【3】GDT + LDT (全局描述符表+局部描述符表) from p49.asm

3.1 GDT的首地址(基地址)定义, 跟在它后面的都是其表项

3.1.1 GDT定义

[SECTION .gdt]
; GDT
;                                         段基址,       段界限     , 属性
LABEL_GDT:         Descriptor       0,                 0, 0         ; 空描述符
LABEL_DESC_NORMAL: Descriptor       0,            0ffffh, DA_DRW    ; Normal 描述符
LABEL_DESC_CODE32: Descriptor       0,  SegCode32Len - 1, DA_C + DA_32  ; 非一致代码段, 32
LABEL_DESC_CODE16: Descriptor       0,            0ffffh, DA_C      ; 非一致代码段, 16
LABEL_DESC_DATA:   Descriptor       0,       DataLen - 1, DA_DRW+DA_DPL1    ; Data
LABEL_DESC_STACK:  Descriptor       0,        TopOfStack, DA_DRWA + DA_32; Stack, 32 位
LABEL_DESC_LDT:    Descriptor       0,        LDTLen - 1, DA_LDT    ; LDT (局部描述符表)
LABEL_DESC_VIDEO:  Descriptor 0B8000h,            0ffffh, DA_DRW    ; 显存首地址
; GDT 结束

3.1.2 LDT定义

; LDT
[SECTION .ldt]
ALIGN   32
LABEL_LDT:
;                            段基址       段界限      属性
LABEL_LDT_DESC_CODEA: Descriptor 0, CodeALen - 1, DA_C + DA_32 ; Code, 32 位
LDTLen      equ $ - LABEL_LDT
; LDT 选择子
SelectorLDTCodeA    equ LABEL_LDT_DESC_CODEA    - LABEL_LDT + SA_TIL
; END of [SECTION .ldt] 
; CodeA (LDT, 32 位代码段)

3.2 初始化

   ; 初始化 LDT 在 GDT 中的描述符
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_LDT
mov word [LABEL_DESC_LDT + 2], ax
shr eax, 16
mov byte [LABEL_DESC_LDT + 4], al
mov byte [LABEL_DESC_LDT + 7], ah
; 初始化 LDT 中的描述符
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_CODE_A
mov word [LABEL_LDT_DESC_CODEA + 2], ax
shr eax, 16
mov byte [LABEL_LDT_DESC_CODEA + 4], al
mov byte [LABEL_LDT_DESC_CODEA + 7], ah
; 为加载 GDTR 作准备
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_GDT      ; eax <- gdt 基地址
mov dword [GdtPtr + 2], eax ; [GdtPtr + 2] <- gdt 基地址

版权声明:本文为博主原创文章,未经博主允许不得转载。

原文地址:https://www.cnblogs.com/pacoson/p/4893177.html