bzoj3601-一个人的数论

题目

定义:

[egin{aligned} f_d(n)=sum _{gcd(x,n)=1} x^d end{aligned} ]

给定(d)(n) ((n)以质因数分解的形式给出),求(f_d(n) (mod 10^9+7))

分析

本来是学莫比乌斯反演时候的题,拖到了高斯消元来做。
看到一个互质,即(gcd(x,n)=1),马上就能想到莫比乌斯函数的那个性质:

[令 f(n)=sum _{d|n} mu(d) \ 则有 f(n)= left{egin{aligned} 1,n=1\0,n>1end{aligned} ight. ]

下面我们证明这个结论:
(n=1),结论显然。
(n>1),那么我们设

[egin{aligned} s=prod _{i=1} ^k p_i^{a_i},k|n end{aligned} ]

当任意一个(a\_i>1)时,(mu(s)=0)
所以上面的(f(n))等价于(f(s)),其中(s=prod\_{i=1}^k p\_i)
根据莫比乌斯函数的定义,当(k)为奇数时,(f(s)=-1)(k)为偶数时,(f(s)=1).
所以(f(n))可以写成:

[egin{aligned} f(n)=C_k^0-C_k^1+C_k^2....=sum _{i=0}^k (-1)^i*C_k^i end{aligned} ]

所以我们现在要证明的就是:

[egin{aligned} sum _{i=0}^k (-1)^i*C_k^i=0 end{aligned} ]

注意到二项式定理:

[egin{aligned} (x+y)^n=sum _{i=0}^k C_k^i*x^i*y^{k-i} end{aligned} ]

与我们要证明的结论的相似性,我们令(x=-1)(y=1),即可得证。

这样,我们可以对原式进行变形:

[egin{aligned} f_d(n)&=sum _{gcd(x,n)=1} x^d \ &=sum _{x=1}^n x^d[gcd(x,n)=1] \ &=sum _{x=1}^n x^dsum _{c|gcd(x,n)}mu(c) \ &=sum _{c|n} sum _{x=1}^{frac{n}{c}} (cx)^dmu(c) \ &=sum _{c|n} mu(c)c^d sum _{x=1} ^{frac{n}{c}} x^d \ end{aligned} ]

令:

[egin{aligned} h(n)=sum _{i=1}^n i^d end{aligned} ]

我们称(h)为自然数幂和。
则有:

[egin{aligned} f_d(n)=sum _{c|n} mu(c)c^d h(frac{n}{c}) \ end{aligned} ]

这里有一个很奇妙的,并且正确的猜想:

[egin{aligned} h(n)=sum _{i=1} ^{d+1}a_in^i end{aligned} ]

也就是说,自然数幂和可以用(n)的多项式表示出来。
于是奇妙地用到了高斯消元,直接用(1)(d+1)为例子,列出(d+1)个方程,强行把多项式的系数解出来。其实自然数幂和有通项公式,近期会有相关的文章。于是我们有:

[egin{aligned} f_d(n)&=sum _{c|n} mu(c)c^d sum _{i=1} ^{d+1}a_i(frac{n}{c})^i \ &=sum _{i=1}^{d+1} a_i sum _{c|n} mu(c)c^d(frac{n}{c})^i end{aligned} ]

令:

[egin{aligned} g_i(n)=sum _{c|n} mu(c)c^d(frac{n}{c})^i end{aligned} ]

那么有:

[egin{aligned} f_d(n)=sum _{i=1}^{d+1} a_i *g_i(n) end{aligned} ]

现在我们可以在(O(d^3))的时间内求出所有的(a_i),只要对每个(i)求出(g_i(n)),我们就能(O(d))算出答案了。
若令(r(c)=mu(c)c^d),那么有:

[egin{aligned} g_i(n)=sum _{c|n} r(c)(frac{n}{c})^i end{aligned} ]

这是一个狄利克雷卷积(即形如 (t(n)=sum _{d|n}f(d)g(frac{n}{d}))的函数)!
狄利克雷卷积函数有一个性质,如果原来两个函数都是积性函数,那么新函数也是积性函数。证明如下:
如果两个函数不完全积性,那么需要(gcd(x,y)=1),否则不需要。

[egin{aligned} t(x)t(y)&=sum _{d|x}f(d)g(frac{x}{d}) sum _{e|y}f(e)g(frac{y}{e}) \ &=sum _{de|xy}f(de)g(frac{xy}{de}) \ &=t(xy) end{aligned} ]

所以我们可以通过(n)的质因数分解求出每个(g_i(n))

[egin{aligned} g_i(n)=prod _{j=1}^w g_i(p_j^{q_j}) end{aligned} ]

而对于只包含一个质数的(g)函数:

[egin{aligned} g_i(p^q) &=sum _{j=0}^q mu(p^j)p^{jd}(frac{p^q}{p^j})i \ &= left{egin{aligned} p^{qi},j=0\-p^{qi+d-i},j=1\ 0, otherwiseend{aligned} ight. end{aligned} ]

所以有:

[egin{aligned} g_i(p^q) =p^{qi}-p^{qi+d-i} end{aligned} ]

直接计算即可。还是很简单的嘛!

代码

公式推错了四次~

#include<cstdio>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long giant;
giant read() {
	giant x=0,f=1;
	char c=getchar();
	for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
	for (;isdigit(c);c=getchar()) x=x*10+c-'0';
	return x*f;
}
const giant maxn=1e3+5;
const giant maxd=105;
const giant q=1e9+7;
giant p[maxn],s[maxn];
giant a[maxd][maxd],as[maxn];
giant mi(giant x,giant y) {
	giant ret=1;
	while (y) {
		if (y&1) (ret*=x)%=q;
		y>>=1,(x*=x)%=q;
	}
	return ret;
}
void elm(giant n) {
	for (giant i=1;i<n;++i) {
		if (!a[i][i]) {
			for (giant j=i+1;j<=n;++j) if (a[j][i]) {
				for (giant k=1;k<=n+1;++k) swap(a[j][k],a[i][k]);
				break;
			} 	
		}	
		giant inv=mi(a[i][i],q-2);
		for (giant j=i+1;j<=n;++j) if (a[j][i]) {
			giant tmp=(a[j][i]*inv)%q;
			for (giant k=1;k<=n+1;++k) a[j][k]=((a[j][k]-a[i][k]*tmp+q)%q+q)%q;
		}
	}
	for (giant i=n;i>1;--i) {
		if (!a[i][i]) {
			for (giant j=i-1;j>0;--j) if (a[j][i]) {
				for (giant k=1;k<=n+1;++k) swap(a[j][k],a[i][k]);
				break;
			}	
		}	
		giant inv=mi(a[i][i],q-2);
		for (giant j=i-1;j>0;--j) if (a[j][i]) {
			giant tmp=(a[j][i]*inv)%q;
			for (giant k=1;k<=n+1;++k) a[j][k]=((a[j][k]-a[i][k]*tmp+q)%q+q)%q;	
		}
	}
}
int main() {
	#ifndef ONLINE_JUDGE
		freopen("test.in","r",stdin);
		freopen("my.out","w",stdout);
	#endif
	giant d=read(),w=read();
	for (giant i=1;i<=w;++i) p[i]=read(),s[i]=read();
	giant sum=0;
	for (giant i=1;i<=d+1;++i) {
		(sum+=mi(i,d))%=q;
		giant tmp=1;
		for (giant j=1;j<=d+1;++j) (tmp*=i)%=q,a[i][j]=tmp;
		a[i][d+2]=sum;
	}
	elm(d+1); 
	for (giant i=1;i<=d+1;++i) as[i]=(a[i][d+2]*mi(a[i][i],q-2))%q;
	giant ans=0;
	for (giant i=1;i<=d+1;++i) {
		giant g=1;
		for (giant j=1;j<=w;++j) {
			giant tmp=(mi(p[j],s[j]*i)-mi(p[j],s[j]*i+d-i)+q)%q;
			(g*=tmp)%=q;
		}
		(ans+=(as[i]*g))%=q;
	}
	printf("%lld
",ans);
}
原文地址:https://www.cnblogs.com/owenyu/p/6724695.html