内存管理 初始化(四)mem_init bootmem 迁移至伙伴系统

mm_init中执行mem_init,将原通过bootmem分配器管理的低端内存 及  通过meminfo得知的高端内存释放到伙伴系统中,最后bootmem位图本身占用的低端内存物理页也被释放进伙伴系统,当然对于内核、初始页表、pkmap页表、struct page实例、ramdisk、percpu变量、dentry_hashtable、inode_hash_table已经被占用的区域不会被释放(对于内核开始的一段,后面会释放).

start_kernel()                                                                                                     
    |---->page_address_init()
    |     考虑支持高端内存
    |     业务:初始化page_address_pool链表;
    |          将page_address_maps数组元素按索
    |          引降序插入page_address_pool链表;
    |          初始化page_address_htable数组
    |
    |---->setup_arch(&command_line);
    |
    |---->setup_per_cpu_areas();
    |     为per-CPU变量分配空间
    |
    |---->build_all_zonelist()
    |     为系统中的zone建立后备zone的列表.
    |     2.6.34中的建立过程与《深入Linux内核架构》中
    |     p_134~p_135的图不符(即使是UMA也不同),
    |     书中讲述是每个zone都有自己的zonelist,
    |     2.6.34中对于UMA,所有zone的后备列表都在
    |     pglist_data->node_zonelists[0]中;
    |
    |     期间也对per-CPU变量boot_pageset做了初始化.
    |
    |---->page_alloc_init()
         |---->hotcpu_notifier(page_alloc_cpu_notifier, 0);
         |     不考虑热插拔CPU
         |
    |---->pidhash_init()
    |     详见下文.
    |     根据低端内存页数和散列度,分配hash空间,并赋予pid_hash
    |
    |---->vfs_caches_init_early()
          |---->dcache_init_early()
          |     dentry_hashtable空间,d_hash_shift, h_hash_mask赋值;
          |     同pidhash_init();
          |     区别:
          |         散列度变化了(13 - PAGE_SHIFT);
          |         传入alloc_large_system_hash的最后参数值为0;
          |
          |---->inode_init_early()
          |     inode_hashtable空间,i_hash_shift, i_hash_mask赋值;
          |     同pidhash_init();
          |     区别:
          |         散列度变化了(14 - PAGE_SHIFT);
          |         传入alloc_large_system_hash的最后参数值为0;
          |
    |---->mm_init()
    |
void mm_init(void)
    |---->mem_init()
    |     业务:bootmem迁移至伙伴系统
    |
    |---->
void mem_init(void)
  |-->max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
  |   max_pfn是物理内存的最大页数量,PHYS_PFN_OFFSET是物理内存的起始
  |   地址在4G空间中的页帧号;
  |   pfn_to_page(max_pfn + PHYS_PFN_OFFSET)是物理内存终结地址所在的页
  |   锁对应的struct page实例虚拟地址,减去mem_map(struct page起始虚
  |   拟地址),故max_mapnr是struct page实例的数量
  |
  |-->free_unused_memmap_node(0, &meminfo)
  |   对于连续内存,bank之间没有间隙,因此free_unused_memmap_node不会执行.
  |
  |-->totalram_pages += free_all_bootmem_node(pgdat);
  |     |--->return free_all_bootmem_core(pgdat->bdata);
  |   1、将低端内存中未被使用的页释放到伙伴系统中;
  |   2、bootmem位图分配器占用的页也释放到了伙伴系统中;
  |
  |-->for_each_nodebank(i, &meminfo, node = 0)
  |--{
  |     unsigned long start = bank_pfn_start(&meminfo.bank[i]);
  |     unsigned long end = bank_pfn_end(&meminfo.bank[i]);
  |
  |     即:只对于高端内存使用free_area(start, end, NULL)
  |     if(start >= max_low_pfn + PHYS_PFN_OFFSET)
  |        totoalhigh_pates += free_area(start, end, NULL);
  |--}
  |
  |--totoalram_pages += totoalhigh_pages;
  |     
  |
  |--for_each_nodebank(i, &meminfo, node)
  |--{ //统计已被分配的页数(物理页已被使用),并存入reserved_pages;
       //统计未被分配的页数(物理页未被使用),并存入free_pages;
  |     ………………
  |--}
  |
  |--num_physpages = meminfo中的各个membank下的总管理区内存大小.
  |
  |-->printk: nr_free_pages() << (PAGE_SHIFT) - 10
  |   关于nr_free_pages()中涉及的值,实际上是在free_one_page函数
  |   中完成的--->__mod_zone_page_state(zone, NR_FREE_PAGES, 1<< order),   
  |   其改变了zone_vm_stat[NR_FREE_PAGES]的值.
                                        
void free_unused_memmap_node(int node, struct meminfo *mi)
|-->unsigned long bank_start, prev_bank_end = 0; | unsigned int i = 0; | |-->for_each_nodebank(i, mi, node) | 遍历属于该node的meminfo下的所有membank; | 对于UMA,membank分为低端内存和高端内存两个bank | | struct membank *bank = &mi->bank[i]; | bank_start = bank_pfn_start(bank); | | if(prev_bank_end && prev_bank_end != bank_start) | free_memmap(node, prev_bank_end, bank_start) | 对于连续内存,bank之间没有间隙,因此free_memmap不会执行. | | prev_bank_end = bank_pfn_end(bank); |-- |


void free_memmap(int node, unsigned long start_pfn, 
                 unsigned long end_pfn) |-->struct page *start_pg = NULL, *end_pg = NULL; | unsigned long pg = 0, pgend = 0; | |-->start_pg = pfn_to_page(start_pfn - 1) + 1; | 该页帧号所对应的struct page实例的虚拟地址 | end_pg = pfn_to_page(end_pfn); | 该页帧号所对应的struct page实例的虚拟地址 | |-->pg = PAGN_ALIGN(__pa(start_pg); | 获取start_pg所对应的虚拟地址,即start_pfn页帧号所对应的struct page实例 | 的物理地址. | pgend = __pa(end_pg) & PAGE_MASK; | 获取end_pg所对应的虚拟地址,即end_pfn页帧号所对应的struct page实例 | 的物理地址. | |-->free_bootmem_node(&contig_page_data, pg, pgend - pg); | 将bootmem分配器中[pg,pgend]所对应的页的bit标志位清0.
|
int free_area(unsigned long pfn, unsigned long end, char *s)
  |-->unsigned int pages = 0, size = (end - pfn) << (PAGESHITF - 10);
  |
  |--for(; pfn < end; pfn++)
  |--{
  |    struct page *page = pfn_to_page(pfn);
  |    ClearPageReserved(page);
  |    init_page_count(page);
  |
  |    __free_page(page);
  |    |--->free_pages(page, 0);
  |         详见下文
| | page++; |--} |
unsigned long free_all_bootmem_core(bootmem_data_t *bdata)
  |-->unsigned long start = bdata->node_min_pfn;
  |     存放低端内存的起始物理页号.
  |   unsigned long end = bdata->node_low_pfn;
  |     存放低端内存的结束物理页号.
  |
  |-->while(start < end)
  |--{
  |     unsigned long *map = bdata->node_bootmem_map;
  |     idx = start - bdata->node_min_pfn;
  |     获取物理内存页帧相对于起始物理内存页帧号的偏移(从0记).
  |     vec = ~map[idx/BITS_PER_LONG];
  |     取构成一个字的位图的反码.
  |
  |    if(vec == ~0UL && start + BITS_PER_LONG < end)
  |    如果一个字内的位图全为0,即一个字内的页都可释放
  |   {int order = ilog2(BITS_PER_LONG);
  |    __free_pages_bootmem(pfn_to_page(start), order);
  |    count += BITS_PER_LONG;}
  |
  |    else //该字内的位图不全为0
  |   {遍历字内的每一bit位,该bit位在字内偏移量为off.
  |    若bit位值为1,则 :
  |        page = pfn_to_page(start + off);
  |        __free_pages_bootmem(page, 0);
  |       count++;}
  |
  |   start += BITS_PER_LONG;  
  |--}     
  |
  |-->page = virt_to_page(bdata->node_bootmem_map);
  |   获取位图占用的页的相应的struct page 实例的起始虚拟地址.
  |
  |   pages= bdata->node_low_pfn - bdata->node_min_pfn;
  |   pages = bootmem_bootmap_pages(pages);
  |   获取位图所占用的页数
  |
  |   count += pages;
  |   更新释放的总页面数
  |
|-->while(pages--) | __free_pages_bootmem(page++; 0); | 将bootmem位图分配器所占用的页释放到buddy system | |-->return count; | 返回释放给buddy system总的页面数
void __free_pages_bootmem(struct page *page, unsigned int order)
  |-->if(order == 0)
  |--{
  |    __ClearPageReserved(page);
  |    将pgge->flags的PG_reserved清0.
  |    set_page_count(page, 0);
  |    将page->_count清0.
  |    set_page_refcounted(page);
  |    将page->_count置1.
  |    __free_page(page);
| |-->__free_pages(page, 0)
|--} | |--else |--{ | int loop = 0; | for(loop = 0; loop < BITS_PER_LONG; loop++) | { struct page *p = &page[loop]; | __ClearPageReReserved(p); | 将pgge->flags的PG_reserved清0. | set_page_count(p, 0); | 将page->_count清0.} | | set_page_refcounted(page); | //注意此处在循环外只将一个字内的第一个struct page的_count置为1. | __free_pages(page, order); | |--}
void __free_pages(struct page* page, unsigned int order)
  |-->if(put_page_testzero(page))
  |--{
  |   //put_page_testzero(page)的意图在于将page->_count值减去1,并
  |   //检测page->_count的值是否为0,若为0,则执行该块语句.
  |   if(order == 0)
  |      free_hot_cold_page(page, 0);
  |   else
  |      __free_pages_ok(page, order);
  |--}
//我们此处只看系统初始化时的情形
/*
 * Free a 0-order page
 * cold == 1 ? free a cold page : free a hot page
 */
void free_hot_cold_page(struct page *page, int cold)
  |-->struct zone *zone = page_zone(page)
  |   通过page->flags获取该page所属的zone.
  |
  |-->int migratetype = get_pageblock_migratetype(page)
  |   根据page所属的pageblock获取迁移类型, MIGRATETYPE_MOVABLE
  |
  |-->set_page_private(page, migratetype);
  |   初始化时,page设置为MIGRATETYPE_MOVABLE
  |
  |-->struct per_cpu_pages *pcp = NULL;
  |   pcp = &this_cpu_ptr(zone->pageset)->pcp;
  |
  |-->if(cold)
  |      list_add_tail(&page->lru, &pcp->lists[migratetype]);
  |   else
  |      list_add(&page->lru, &pcp->lists[migratetype]);
  |
  |-->pcp->count++;
  |
  |  初始化时pcp->count = 0 -- >1; pcp->high = 0; pcp->batch = 1;
  |-->if(pcp->count >= pcp->high)
  |  { freepcppages_bulk(zone, pcp->batch, pcp);
  |    pcp->count -= pcp->batch; }
  |
  |
void free_pcppages_bulk(struct zone *zone, int count, struct per_cpu_pages *pcp)
  |-->我们此处回避一些问题,因为本记录以初始化为主,所以,我只下该函数在初始化
  |   时的业务.
  |   list_del(&page->lru); 从MIGRATETYPE_MOVABLE上取下.
  |   __free_one_page(page, zone, 0, page_private(page));
void __free_pages_ok(page, order)
  |-->free_one_page(page_zone(page), page, order, 
| get_pageblock_migratetype(page));
|-->__free_one_page(page, zone, order, migratetype);
void __free_one_page(struct page* page, 
        struct zone *zone,
        unsigned int order,
        int migratetype)
  |-->unsigned int page_index = page_to_pfn(page) 
| & ((1 << MAX_ORDER) - 1); | |--while(order < MAX_ORDER - 1) |--{ | unsigned long combined_idx; | struct page *buddy; | | buddy = __page_find_buddy(page, page_idx, order); | 找出可与page_idx构成的伙伴. | | 测试与page_idx相应的页,是否在伙伴系统中 | if(!page_is_buddy(page, buddy, order)) | break; | | 如果在伙伴系统内,则执行伙伴合并,有可能连锁合并,因此用了while循环 | list_del(&buddy->lru); | | zone->free_area[order].nr_free--; | nr_free的意义:处于同一个order下,有nr_free * (2**order)个页 | | rmv_page_order(buddy); | | combined_idx = __find_combined_index(page_idx, order); | 因为可能发生连锁合并,所以计算了combined_idx. |--} | | 对于初始化阶段,均加入free_list[MIGRATETYPE_MOVABLE]; |-->set_page_order(page, order); | list_add(&page->lru,
| &zone->free_area[order].free_list[migratetypes]); | zone->free_area[order].nr_free++;
原文地址:https://www.cnblogs.com/openix/p/3346399.html