【BZOJ】4147: [AMPPZ2014]Euclidean Nim

【算法】博弈论+数论

【题意】给定n个石子,两人轮流操作,规则如下:

轮到先手操作时:若石子数<p添加p个石子,否则拿走p的倍数个石子。记为属性p。

轮到后手操作时:若石子数<q添加q个石子,否则拿走q的倍数个石子。记为属性q。

拿走所有石子的人胜利,问先手是否必胜,或输出游戏会永远进行下去。

【题解】学习自:BZOJ 4147 AMPPZ2014 Euclidean Nim 博弈论+数论 by popoqqq

首先博弈过程可以表示为不定方程ap+bq=n

然后由扩欧可知此方程有解当且仅当gcd(a,b)|n,无解则永远进行下去。

方程有解时,两边同除gcd简化运算,p/=d,q/=d,n/=d,此时p,q互质,由于方程有解,一定能拿完,那么考虑谁先拿完。

对于一个状态(p,q,n)表示先手操作属性p,后手操作属性q,当前剩余n石子,p>q,有以下两种重要情况:

★1.n<p,先手必败。

证明:(p,q,n)--->(q,p,n+p)--->(p,q,(n+p)%q),由于(n+p)%q<q,所以先手方p只能被迫一直增加,最终一定由q方拿完。

★2.n>p,当且仅当(p-q)|(n%p)&&(n%p<q)时先手必胜。

证明:若n%p>=q,那么就回到了第一种情况的第二步,先手必败。

若n%p<q,则先手必须取模到比q小避免必败,然后后手就被迫+q,先手再-p,后手再+q。

如此每次循环石子堆都会减少(p-q),如果减少到0则先手胜,如果直接减到负数其实就是不够-p的情况,则又回到情况1的第二步,先手必败。

所以当且仅当(p-q)|(n%p)&&(n%p<q)时先手必胜。

讨论完重要情况后,开始对问题本身分情况讨论:

1.p=q=1时,先手必胜。

2.p>q,p>n,回归重要情况1,先手必败。

3.p>q,p<=n,回归重要情况2,当且仅当(p-q)|(n%p)&&(n%p<q)时先手必胜。

4.p<q,p>n,先手被迫+p,若n+p<q,后手回归重要情况1,先手必胜。若n+p>=q,后手回归重要情况2,当且仅当(q-p)|((n+p)%q)&&((n+p)%q<p)时先手必败。

5.p<q,p<=n,先手变成n%p,后手回归重要情况1,先手必胜。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
bool calc(int p,int q,int n){return n%p<q&&(n%p)%(p-q)==0;}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int p,q,n;
        scanf("%d%d%d",&p,&q,&n);
        int d=gcd(p,q);
        if(n%d!=0){printf("R
");continue;}
        p/=d;q/=d;n/=d;
        if(p==q)printf("E
");else
        if(p>q&&p>n)printf("P
");else
        if(p>q&&p<=n){if(calc(p,q,n))printf("E
");else printf("P
");}else
        if(p<q&&p>n){if(n+p<q)printf("E
");else{if(calc(q,p,n+p))printf("P
");else printf("E
");}}else
        if(p<q&&p<=n)printf("E
");
    }
    return 0;
}
View Code
原文地址:https://www.cnblogs.com/onioncyc/p/7249524.html