转推荐算法——基于矩阵分解的推荐算法

推荐算法概述

对于推荐系统(Recommend System, RS),从广义上的理解为:为用户(User)推荐相关的商品(Items)。常用的推荐算法主要有:

  • 基于内容的推荐(Content-Based Recommendation)
  • 协同过滤的推荐(Collaborative Filtering Recommendation)
  • 基于关联规则的推荐(Association Rule-Based Recommendation)
  • 基于效用的推荐(Utility-Based Recommendation)
  • 基于知识的推荐(Knowledge-Based Recommendation)
  • 组合推荐(Hybrid Recommendation)

在推荐系统中,最重要的数据是用户对商品的打分数据,数据形式如下所示:

这里写图片描述

其中,U1U5表示的是5个不同的用户,D1D4表示的是4个不同的商品,这样便构成了用户-商品矩阵,在该矩阵中,有用户对每一件商品的打分,其中“-”表示的是用户未对该商品进行打分。

在推荐系统中有一类问题是对未打分的商品进行评分的预测。

目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有基本矩阵分解(basic MF),正则化矩阵分解)(Regularized MF),基于概率的矩阵分解(PMF)等。今天以“用户-项目评分矩阵R(N×M)”说明三种分解方式的原理以及应用。

用户-项目评分矩阵

  • Basic MF:

    Basic MF是最基础的分解方式,将评分矩阵R分解为用户矩阵U和项目矩阵S, 通过不断的迭代训练使得U和S的乘积越来越接近真实矩阵,矩阵分解过程如图: 
    矩阵分解过程

    预测值接近真实值就是使其差最小,这是我们的目标函数,然后采用梯度下降的方式迭代计算U和S,它们收敛时就是分解出来的矩阵。我们用损失函数来表示误差(等价于目标函数): 
    损失函数 公式1

    公式1中R_ij是评分矩阵中已打分的值,U_i和S_j相当于未知变量。为求得公式1的最小值,相当于求关于U和S二元函数的最小值(极小值或许更贴切)。通常采用梯度下降的方法: 
    梯度下降

    学习速率是学习速率,表示迭代的步长。其值为1.5时,通常以震荡形式接近极值点;若<1迭代单调趋向极值点;若>2围绕极值逐渐发散,不会收敛到极值点。具体取什么值要根据实验经验。


    • Regularized MF

      正则化矩阵分解是Basic MF的优化,解决MF造成的过拟合问题。其不是直接最小化损失函数,而是在损失函数基础上增加规范化因子,将整体作为损失函数。 
      Regularized MF

      红线表示正则化因子,在求解U和S时,仍然采用梯度下降法,此时迭代公式变为:(图片截取自相关论文,S和V等价) 
      梯度下降

      其中, E

      梯度下降结束条件:f(x)的真实值和预测值小于自己设定的阈值(很小的值,之前一直理解为是变量U和V的迭代值差小于阈值就行,弄了一天才懂。)

程序实现

对于上述的评分矩阵,通过矩阵分解的方法对其未打分项进行预测,最终的结果为:

这里写图片描述

程序代码如下:

#!/bin/python
'''
Date:20160411
@author: zhaozhiyong
'''
from numpy import *

def load_data(path):
    f = open(path)
    data = []
    for line in f.readlines():
        arr = []
        lines = line.strip().split("	")
        for x in lines:
            if x != "-":
                arr.append(float(x))
            else:
                arr.append(float(0))
        #print arr
        data.append(arr)
    #print data
    return data

def gradAscent(data, K):
    dataMat = mat(data)
    print dataMat
    m, n = shape(dataMat)
    p = mat(random.random((m, K)))
    q = mat(random.random((K, n)))

    alpha = 0.0002
    beta = 0.02
    maxCycles = 10000

    for step in xrange(maxCycles):
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    #print dataMat[i,j]
                    error = dataMat[i,j]
                    for k in xrange(K):
                        error = error - p[i,k]*q[k,j]
                    for k in xrange(K):
                        p[i,k] = p[i,k] + alpha * (2 * error * q[k,j] - beta * p[i,k])
                        q[k,j] = q[k,j] + alpha * (2 * error * p[i,k] - beta * q[k,j])

        loss = 0.0
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    error = 0.0
                    for k in xrange(K):
                        error = error + p[i,k]*q[k,j]
                    loss = (dataMat[i,j] - error) * (dataMat[i,j] - error)
                    for k in xrange(K):
                        loss = loss + beta * (p[i,k] * p[i,k] + q[k,j] * q[k,j]) / 2

        if loss < 0.001:
            break
        #print step
        if step % 1000 == 0:
            print loss

    return p, q


if __name__ == "__main__":
    dataMatrix = load_data("./data")

    p, q = gradAscent(dataMatrix, 5)
    '''
    p = mat(ones((4,10)))
    print p
    q = mat(ones((10,5)))
    '''
    result = p * q
    #print p
    #print q

    print result

其中,利用梯度下降法进行矩阵分解的过程中的收敛曲线如下所示:

这里写图片描述

'''
Date:20160411
原文作者:@author: zhaozhiyong
'''

from pylab import *
from numpy import *

data = []

f = open("result")
for line in f.readlines():
    lines = line.strip()
    data.append(lines)

n = len(data)
x = range(n)
plot(x, data, color='r',linewidth=3)
plt.title('Convergence curve')
plt.xlabel('generation')
plt.ylabel('loss')
show()
原文地址:https://www.cnblogs.com/onemorepoint/p/8167942.html