P3768 简单的数学题 杜教筛+推式子

(color{#0066ff}{ 题目描述 })

由于出题人懒得写背景了,题目还是简单一点好。

输入一个整数n和一个整数p,你需要求出((sum_{i=1}^nsum_{j=1}^n ijgcd(i,j))~mod~p),其中gcd(a,b)表示a与b的最大公约数。

(color{#0066ff}{输入格式})

一行两个整数p、n。

(color{#0066ff}{输出格式})

一行一个整数((sum_{i=1}^nsum_{j=1}^n ijgcd(i,j))~mod~p)

(color{#0066ff}{输入样例})

998244353 2000

(color{#0066ff}{输出样例})

883968974

(color{#0066ff}{数据范围与提示})

对于20%的数据,(n leq 1000)

对于30%的数据,(n leq 5000)

对于60%的数据,(n leq 10^6),时限1s。

对于另外20%的数据,(n leq 10^9),时限3s。

对于最后20%的数据,(n leq 10^{10}),时限6s。

对于100%的数据,(5 imes 10^8 leq p leq 1.1 imes 10^9)且p为质数。

(color{#0066ff}{ 题解 })

这是一道神仙题qwq

开始推式子

题目要求

[sum_{i=1}^nsum_{j=1}^n i*j*gcd(i,j) ]

老规矩,枚举gcd

[sum_{d=1}^nsum_{i=1}^nsum_{j=1}^n [gcd(i,j)==d]i*j*d ]

把d提出来

[sum_{d=1}^n dsum_{i=1}^nsum_{j=1}^n [gcd(i,j)==d]i*j ]

后面把d弄出来

[sum_{d=1}^n d^3sum_{i=1}^{lfloor frac n d floor}sum_{j=1}^{lfloor frac n d floor} [gcd(i,j)==1]i*j ]

利用(mu * i = e)套进去

[sum_{d=1}^n d^3sum_{i=1}^{lfloor frac n d floor}sum_{j=1}^{lfloor frac n d floor} sum_{k|gcd(i,j)} mu(k)*i*j ]

[sum_{d=1}^n d^3sum_{k=1}^{lfloorfrac n d floor}sum_{k|i} sum_{k|j} mu(k)*i*j ]

改为枚举倍数

[sum_{d=1}^n d^3sum_{k=1}^{lfloorfrac n d floor} mu(k)*k^2sum _{i=1}^{lfloorfrac n {kd} floor} sum _{j=1}^{lfloorfrac n {kd} floor}i*j ]

看到这个式子,大为欣喜,于是

[令f(i)=mu(i) * i^2, g(i)=i^2 ]

[h(n)=sum_{d|n} f(d)*g(frac n d) ]

[h(n)=n^2sum_{d|n} mu(d)=e(n) ]

于是以为这题切掉了?????

我TM。。数据范围尼玛(10^9)

(how to O(sqrt n ^2))

显然要继续往下推

某巨佬有一手,pd换q的操作(原式为kd换q)

于是,先将原式变为

[sum_{d=1}^n sum_{k=1}^{lfloorfrac n d floor} mu(k)*k^2 * d^3sum _{i=1}^{lfloorfrac n {kd} floor} sum _{j=1}^{lfloorfrac n {kd} floor}i*j ]

考虑枚举q,那么里面的kd就可以提出来了

[sum_{q=1}^n q^2sum_{k=1}^{lfloorfrac n d floor} mu(k)* dsum _{i=1}^{lfloorfrac n {kd} floor} sum _{j=1}^{lfloorfrac n {kd} floor}i*j ]

这里面的d有点突兀qwq

[sum_{q=1}^n q^2sum_{k=1}^{lfloorfrac n d floor} mu(k)* frac q k sum _{i=1}^{lfloorfrac n {q} floor}i sum _{j=1}^{lfloorfrac n {q} floor}j ]

上面的式子是有问题的,因为枚举的(q=kd),那么k应该是q的因子,所以要改一下枚举,同时后面的可以写成平方形式

[sum_{q=1}^n q^2sum_{k|q} mu(k)* frac q k (sum _{i=1}^{lfloorfrac n {q} floor}i)^2 ]

然后可以把q提出来

[sum_{q=1}^n q^3sum_{k|q} frac {mu(k)} k (sum _{i=1}^{lfloorfrac n {q} floor}i)^2 ]

然后因为有

[sum_{k|n} frac {mu(k)} k =frac {varphi(n)} {n} ]

因此代回去

[sum_{q=1}^n q^3frac {varphi(q)} q (sum _{i=1}^{lfloorfrac n {q} floor}i)^2 ]

卧槽,继续

[sum_{q=1}^n varphi(q) * q^2 (sum _{i=1}^{lfloorfrac n {q} floor}i)^2 ]

我Fuck, (O(sqrt n)) 我就不信还过不了??

[令f(i)=varphi(i) * i^2, g(i)=i^2 ]

[h(n)=sum_{d|n} f(d)*g(frac n d)=sum_{d|n}varphi(d)*n^2=n^3 ,因为(varphi * i = id) ]

杜教筛+数列分块就行了

注意各种取模,少一个都WAqwq

#include<bits/stdc++.h>
#define int long long
#define LL long long
LL in() {
	char ch; LL x = 0, f = 1;
	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
	return x * f;
}
const int maxn = 4e6 + 10;
LL pri[maxn], phi[maxn], tot, mod;
LL six;
std::map<int, LL> mp;
bool vis[maxn];
LL ksm(LL x, LL y) {
	LL re = 1LL;
	while(y) {
		if(y & 1) re = re * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return re;
}
void predoit() {
	mod = in();
	six = ksm(6, mod - 2);
	phi[1] = 1;
	for(int i = 2; i < maxn; i++) {
		if(!vis[i]) pri[++tot] = i, phi[i] = i - 1;
		for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
			vis[i * pri[j]] = true;
			if(i % pri[j] == 0) {
				phi[i * pri[j]] = phi[i] * pri[j];
				break;
			}
			else phi[i * pri[j]] = phi[i] * (pri[j] - 1);
		}
	}
	for(LL i = 2; i < maxn; i++) phi[i] = phi[i] * (i * i % mod) % mod;
	for(LL i = 2; i < maxn; i++) (phi[i] += phi[i - 1]) %= mod;
}
LL getpfh(LL x) {
	x %= mod;
	LL ans = x;
	ans = (ans * (x + 1)) % mod;
	ans = (ans * ((x << 1LL) + 1)) % mod;
	return ans * six % mod;
}
LL getlf(LL n) {
	n %= mod;
	n = (n * (n + 1) >> 1) % mod;
	return n * n % mod;
}
LL getphi(LL n) {
	if(n < maxn) return phi[n];
	if(mp.count(n)) return mp[n];
	LL ans = getlf(n);
	for(LL l = 2, r; l <= n; l = r + 1) {
		r = n / (n / l);
		LL tot1 = ((getpfh(r) - getpfh(l - 1)) % mod + mod) % mod;
		tot1 = tot1 * getphi(n / l) % mod;
		ans = ((ans - tot1) % mod + mod) % mod;
	}
	return mp[n] = ans;
}
LL getsum(LL x) {
	x %= mod;
	LL ans = (x * (x + 1) >> 1LL) % mod;
	return ans * ans % mod;
}
void work(LL n) {
	LL ans = 0;
	for(LL l = 1, r; l <= n; l = r + 1) {
		r = n / (n / l);
		LL tot1 = ((getphi(r) - getphi(l - 1)) % mod + mod) % mod;
		tot1 = (tot1 * getsum(n / l)) % mod;
		ans = (ans + tot1) % mod;
	}
	printf("%lld", (ans % mod + mod) % mod);
}
signed main() {
	predoit();
	work(in());
	return 0;
}
原文地址:https://www.cnblogs.com/olinr/p/10297063.html