Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(一)

Chapter1是个总览,引出了射影几何的概念,通过在欧式空间中,添加一条位于无穷远处的线,所有平行线相交于此线上来构成射影空间。之前只接触过初等几何的知识,于是我学习了一下解析几何的知识,书籍是丘维声的《解析几何》,以此作为入门教材,还是很不错的,书中引述了Erlangen Program,即每种几何都是研究图形在一定的变换群下不变的性质。本书中在Chapter2中也提到了这一观点,并随后介绍了一些变换群及不变量。

也提出了Homogeneity的概念,即用(x,y,w)表示一类点,w为缩放系数,几何意义就变成了某一条线上的所有点,书中也提到了点和线是等价的,从刚才也可以看出,一类位于一条线上的点也就代表了一条线。上学期的图形学课也涉及到了这个概念,是从平移变换的矩阵形式阐述的:如果用2*2矩阵点乘(x,y)不好表示平移变换,于是扩展成了3*3矩阵点乘(x,y,w)。

欧式几何,仿射几何,投影几何。之前说了,投影几何是添加infinite points,不过并不与其他线区分,每条线都可以是line at infinity,于是没有平行的性质。仿射几何特化了line at infinity,两条平行线相交于无穷远处一点,具有平行的性质。欧式几何则是by singling out first a line at infinity and subsequently, two points called circular points lying on this line then affine geometry becomes Euclidean geometry 。二维中这两个点是(1,+-i,0),想象一下,欧式空间中两个椭圆顶多相交点有两个,但是在仿射空间中有四个(两个在无穷远处),用homogeneous coordinates (x, y, w) 写出的椭圆方程

可以发现,每个椭圆都经过(1,±i,0)T 并且他们是在无穷远处的,they are called the circular points of the plane 。比如仿射几何中不区分椭圆与圆,他们之间可以经由仿射变换得到,但是欧式几何中则有形状作为不变量,书中说In particular, concepts such as angle and length ratios may be defined in terms of the circular points. 目前还不太不太理解。不过仿照仿射几何中线的朝向是由线与无穷远处交点定义的,它的意思应该也差不多。

If the camera centre moves, then the images are in general not related by a projective transformation, unless all the space points are coplanar. 如果点共面,那么不同的camera centre就可以用一个投影变换关联原平面与之后的成像平面。经由IAC可以校准camera,IAC的概念还没看,待解决。之后大体介绍了如何由2 views, 3 views, n views 进行3d还原,但是由于可以在成像的投影变换中添加任意的投影变换,即

,“the reconstruction has a projective ambiguity ”这些还原可能出现如下的误差

具体如何重建见后续。

原文地址:https://www.cnblogs.com/ocDx01jin/p/4448622.html