康托展开

转载于:http://blog.csdn.net/morgan_xww/article/details/6275460

康托展开:

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!

ai为整数,并且0<=ai<i(1<=i<=n)

应用实例:

{1,2,3,4,...,n}的排列总共有n!种,将它们从小到大排序,怎样知道其中一种排列是有序序列中的第几个?

如 {1,2,3} 按从小到大排列一共6个:123 132 213 231 312 321。想知道321是{1,2,3}中第几个大的数。

这样考虑:第一位是3,小于3的数有1、2 。所以有2*2!个。再看小于第二位,小于2的数只有一个就是1 ,所以有1*1!=1 所以小于32

的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。2*2!+1*1!是康托展开。

再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个,0*3!,第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2,1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数,0*1!,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

int  fac[] = {1,1,2,6,24,120,720,5040,40320}; //i的阶乘为fac[i]   
/*  康托展开. 
    {1...n}的全排列由小到大有序,s[]为第几个数  */  
int KT(int n, int s[])  
{  
    int i, j, t, sum;  
    sum = 0;  
    for (i=0; i<n; i++)  
    {  
        t = 0;  
        for (j=i+1; j<n; j++)  
            if (s[j] < s[i])  
                t++;  
        sum += t*fac[n-i-1];  
    }  
    return sum+1;  
}  

康托展开的逆运算:

{1,2,3,4,5}的全排列已经从小到大排序,要找出第16个数:

1. 首先用16-1得到15

2. 用15去除4! 得到0余15

3. 用15去除3! 得到2余3

4. 用3去除2! 得到1余1

5. 用1去除1! 得到1余0

有0个数比它小的数是1

所以第一位是1

有2个数比它小的数是3,但1已经在之前出现过了所以是4

有1个数比它小的数是2,但1已经在之前出现过了所以是3

有1个数比它小的数是2,但1,3,4都出现过了所以是5

最后一个数只能是2

所以这个数是14352

/*  康托展开的逆运算. 
    {1...n}的全排列,中的第k个数为s[]  */  
void invKT(int n, int k, int s[])  
{  
    int i, j, t, vst[8]={0};  
    k--;  
    for (i=0; i<n; i++)  
    {  
        t = k/fac[n-i-1];  
        for (j=1; j<=n; j++)  
            if (!vst[j])  
            {  
                if (t == 0) break;  
                t--;  
            }  
        s[i] = j;  
        vst[j] = 1;  
        k %= fac[n-i-1];  
    }  
}  
原文地址:https://www.cnblogs.com/noip/p/2475651.html