04-10 Bagging和随机森林


更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

Bagging算法和随机森林

集成学习主要分成两个流派,其中一个是Boosting算法,另一个则是本文要讲的Bagging算法,Bagging算法
算法的弱学习器是没有依赖关系的,因此弱学习之间可以并行拟合。

Bagging算法中最著名的算法是随机森林,由于随机森林的不容易过拟合性以及简便性,可以说是和梯度提升树同名的算法。

一、Bagging算法和随机森林学习目标

  1. Bagging算法原理
  2. Bagging算法流程
  3. 随机森林和Bagging算法区别
  4. 随机森林流程

二、Bagging算法原理回顾

Bagging算法的弱学习器的训练集是通过随机采样得到的。通过(T)次的随机采样,我们可以通过自主采样法(bootstrap sampling)得到(T)个采样集,然后对于这(T)个采样集独立的训练出(T)个弱学习器,之后我们通过某种结合策略将这(T)个弱学习器构造成一个强学习器。

在一个有(m)个样本的训练数据中随机采样,一个样本每次被采样的概率为({frac{1}{m}}),不被采集的概率为(1-{frac{1}{m}}),如果(m)次采样都没有采中的概率为((1-{frac{1}{m}})^m),当(m ightarrow{infty})((1-{frac{1}{m}})^m ightarrow{frac{1}{e}}approx0.368),即在Bagging算法的随机采样中,大约有(36.8%)的数据没有被采中。

Bagging算法的结合策略,对于分类问题,一般使用相对多数投票法,即票数最多的类别即为样本预测类别;对于回归问题,一般使用简单平均法,即对(T)个弱学习的输出做算术平均得到样本预测值。

三、Bagging算法流程

3.1 输入

(m)个样本(n)个特征的训练数据集(D={(x_1,y_1),(x_2,y_2),cdots,(x_m,y_m)});弱学习器迭代次数为(T)

3.2 输出

最终强学习器(f(x))

3.3 流程

  1. 对训练集进行第(tquad(t=1,2,cdots,T))次随机采样,共采集(m)次,得到有(m)个样本的采样集(D_t)
  2. 用采样集(D_t)训练第(t)个弱学习器(G_t(x))
  3. 对于分类问题,使用相对多数投票法预测分类结果;对于回归问题,使用简单平均法得到预测值

四、随机森林详解

4.1 随机森林和Bagging算法区别

随机森林(random forest,RF)基于Bagging算法的思想,做了一定的改进,即对特征进行了选择。

RF使用CART决策树作为弱学习器,但是RF对普通的CART决策树做了改进,普通的CART树选择最优特征作为决策树划分的条件;RF的CART决策树则是在训练数据的(n)个特征中随机选择(n_{sub})特征,一般情况下(n_{sub}<n),然后在这(n_{sub})个特征中选择最优特征作为决策树划分的条件。

如果(n_{sub}=n),则RF的决策树为普通的决策树;(n_{sub})越小,则模型鲁棒性越好,模型方差也会减小,但模型对训练集的拟合程度会变差,反之,模型的偏差会变小,模型对训练集的泛化能力会变差。

五、随机森林拓展

RF在实际应用中不仅能解决分类和回归问题,还可以用于特征转换、异常点检测等。

5.1 Extra Trees

Extra Trees和RF的区别有以下两点:

  1. 对于每个决策树的训练集,RF采用的随机采样集;对于extra trees,每个决策树采用原始数据集
  2. RF会基于基尼系数、信息熵的方式,选择一个最优的特征值划分;extra teees则会随机选择一个特征值划分特征数

以上两点导致extra trees生成的随机森林的决策树规模一般会大于RF。即可以一定程度的减小模型的方差,增强模型的泛化能力。

# 使用ExtraTree判断特征重要性程度
from sklearn.datasets import make_friedman1
from sklearn.ensemble import ExtraTreesRegressor

X, y = make_friedman1(n_samples=100, n_features=10, random_state=0)

# 通过ExtraTreesRegressor模型获取每个特征的重要性
et = ExtraTreesRegressor(n_estimators=10)
et = et.fit(X, y)
print('10个特征各自的重要性:{}'.format(et.feature_importances_))
10个特征各自的重要性:[0.11488041 0.12557425 0.08477273 0.45483849 0.09753123 0.01384401
 0.0364967  0.0256125  0.01965904 0.02679065]

5.2 Totally Random Trees Embedding

Totally Random Trees Embedding(TRTE)是一种无监督学习的数据转换方式,它可以将低维的数据集映射到高维,在支持向量机中使用了核技巧将低维的数据映射到高维,TRTE提供了不同于核技巧的方法。

TRTE首先会构成一个类似RF的随机森林模型,模型定下来后模型中(T)个决策树的叶子节点位置也会被确定。

现在假设我们有3棵决策树,每个决策树有4个叶子节点,某个数据特征(x)划分到第1个决策树的第1个叶子节点,第2棵决策树的第2个节点,第3棵决策树的第4个节点,则(x)映射后的特征编码为((1,0,0,0quad0,1,0,0quad0,0,0,1)),由此既可以得到12维的高维特征。

5.3 Isolation Forest

Isolation Forest(IForest)可以检测异常点。

IForest类似于RF,但在随机采样的时候,IForest随机采样的数量并不是(m)个,而是远远小于训练集个数,因为IForest的作用是检测异常点,如果采样过多正确样本会掩盖掉异常点。

在划分特征的时候,IForest对划分特征随机选择一个划分阈值,并随机选择一个特征划分决策树。

由于IForest的样本数过少,IForest也会选择一个较小的最大决策树深度控制决策树的深度。

将测试样本(x)拟合到(T)棵决策树,计算每颗决策树上该样本的叶子节点的深度(h_t(x)),从而计算出平均高度,则样本点(x)的异常概率为

[s(x,m) = 2^{-{frac{h(x)}{c(m)}}} ]

其中(m)为样本个数,(c(m))的表达式为

[c(m) = 2ln(m-1)+xi-2{frac{m-1}{m}} ]

其中(xi)为欧拉常数,(s(x,m))的取值范围是([0,1]),取值越接近1,测试样本点是异常点的概率越大。

六、随机森林流程

6.1 输入

(m)个样本(n)个特征的训练数据集(D={(x_1,y_1),(x_2,y_2),cdots,(x_m,y_m)});弱学习器迭代次数为(T)

6.2 输出

最终强学习器(f(x))

6.3 流程

  1. 对训练集进行第(tquad(t=1,2,cdots,T))次随机采样,共采集(m)次,得到有(m)个样本的采样集(D_t)
  2. 用采样集(D_t)训练第(t)个决策树模型(G_t(x)),在训练决策树模型的时候,从(n)个特征中随机选择(n_{sub})个特征,然后从(n_{sub})个特征中选择最优的特征作为划分决策树的条件。
  3. 对于分类问题,使用相对多数投票法预测分类结果;对于回归问题,使用简单平均法得到预测值

七、随机森林优缺点

7.1 优点

  1. 由于弱学习器之间不存在依赖关系,所以可以并行训练模型,这对于大数据非常有优势
  2. 既可以解决回归问题又可以解决分类问题,灵活
  3. 由于在生成模型的时候,可以自由选择特征的划分,可以一定程度解决特征维度较高的问题
  4. RF相当于AdaBoost和GBDT,简单,看数学公式推导量就知道了
  5. 由多个不存在依赖关系的弱学习器结合而成,所以对部分特征缺失不敏感

7.2 缺点

  1. 由于决策树模型对特征进行了选择,因此取值划分较多的特征,会影响RF模型拟合的效果

八、小结

集成学习到这也算是告一段落了,相信大家对Boosting和Bagging算法有了很清晰的了解,对于Boosting中的AdaBoost和GBDT,由于逻辑较为复杂,可以多看一看;对于Bagging中的随机森林,随机森林本身并不是很难理解,只要能够很自如的运用随机森林的一些拓展算法即可。

原文地址:https://www.cnblogs.com/nickchen121/p/11686776.html