算法复杂度分析

原文地址:http://www.cnblogs.com/gaochundong/p/complexity_of_algorithms.html

为什么要对算法进行分析呢?

  • 预测算法所需的资源
    • 计算时间(CPU 消耗)
    • 内存空间(RAM 消耗)
    • 通信时间(带宽消耗)
  • 预测算法的运行时间
    • 计算指令执行的数量,或者称为算法复杂度(Algorithm Complexity)

如何衡量算法复杂度呢?

  • 内存(Memory)
  • 时间(Time)
  • 指令的数量(Number of Steps)
  • 特定操作的数量
    • 磁盘访问数量
    • 网络包数量
  • 渐进复杂度(Asymptotic Complexity)

算法复杂度所包含的情况:

  • 最坏情况(Worst Case)
  • 平均情况(Average Case)
  • 最佳情况(Best Case)

例如,在一个长度为 n 的列表中顺序搜索指定的值,则

  • 最坏情况:n 次比较
  • 平均情况:n/2 次比较
  • 最佳情况:1 次比较

而实际中,我们一般仅考量算法在最坏情况下的运行情况,也就是对于规模为 n 的任何输入,算法的最长运行时间。这样做的理由是:

  1. 一个算法的最坏情况运行时间是在任何输入下运行时间的一个上界(Upper Bound)。
  2. 对于某些算法,最坏情况出现的较为频繁。
  3. 大体上看,平均情况通常与最坏情况一样差。

算法复杂度通常使用 O 记号法(Big O Notation)来表示最坏运行情况的上界。例如,

  • 线性复杂度 O(n) 表示每个元素都要被处理一次。
  • 平方复杂度 O(n2) 表示每个元素都要被处理 n 次。
复杂度 标记符号 描述
常量(Constant)

 O(1) 

操作的数量为常数,与输入的数据的规模无关。

n = 1,000,000 -> 1-2 operations 

对数(Logarithmic)

 O(log n) 

操作的数量与输入数据的规模 n 的比例是 log2 (n)。

n = 1,000,000 -> 30 operations

线性(Linear)  O(n)

操作的数量与输入数据的规模 n 成正比。

n = 10,000 -> 5000 operations

平方(Quadratic)  O(n2)

操作的数量与输入数据的规模 n 的比例为二次平方。

n = 500 -> 250,000 operations

立方(Cubic)  O(n3)

操作的数量与输入数据的规模 n 的比例为三次方。

n = 200 -> 8,000,000 operations

指数(Exponential)

 O(2n)

 O(kn)

 O(n!)

指数级的操作,快速的增长。

n = 20 -> 1048576 operations

注:快速的数学回忆,logab = y 其实就是 ay = b。所以,log24 = 2,因为 22 = 4。同样 log28 = 3,因为 23 = 8。我们说,log2n 的增长速度要慢于 n,因为当 n = 8 时,log2n = 3。

而通常时间复杂度与运行时间有一些常见的比例关系:

复杂度 10 20 50 100 1000 10000 100000
O(1)

<1s

<1s

<1s

<1s

<1s

<1s

<1s

O(log(n))

<1s

<1s

<1s

<1s

<1s

<1s

<1s

O(n)

<1s

<1s

<1s

<1s

<1s

<1s

<1s

O(n*log(n))

<1s

<1s

<1s

<1s

<1s

<1s

<1s

O(n2)

<1s

<1s

<1s

<1s

<1s

2s

3-4 min

O(n3)

<1s

<1s

<1s

<1s

20s

 5 hours 

 231 days 

O(2n)

<1s

<1s

 260 days 

 hangs 

 hangs 

hangs

hangs

O(n!)

<1s

 hangs 

hangs

 hangs 

hangs

hangs

hangs

O(nn)

 3-4 min 

hangs

hangs

 hangs 

hangs

hangs

hangs

计算代码块的渐进运行时间的方法有如下步骤:

  1. 确定决定算法运行时间的组成步骤。
  2. 找到执行该步骤的代码,标记为 1。
  3. 查看标记为 1 的代码的下一行代码。如果下一行代码是一个循环,则将标记 1 修改为 1 倍于循环的次数 1 * n。如果包含多个嵌套的循环,则将继续计算倍数,例如 1 * n * m。
  4. 找到标记到的最大的值,就是运行时间的最大值,即算法复杂度描述的上界。

示例代码(1):

复制代码
1     decimal Factorial(int n)
2     {
3       if (n == 0)
4         return 1;
5       else
6         return n * Factorial(n - 1);
7     }
复制代码

阶乘(factorial),给定规模 n,算法基本步骤执行的数量为 n,所以算法复杂度为 O(n)。

示例代码(2):

复制代码
 1     int FindMaxElement(int[] array)
 2     {
 3       int max = array[0];
 4       for (int i = 0; i < array.Length; i++)
 5       {
 6         if (array[i] > max)
 7         {
 8           max = array[i];
 9         }
10       }
11       return max;
12     }
复制代码

这里,n 为数组 array 的大小,则最坏情况下需要比较 n 次以得到最大值,所以算法复杂度为 O(n)。

示例代码(3):

复制代码
1     long FindInversions(int[] array)
2     {
3       long inversions = 0;
4       for (int i = 0; i < array.Length; i++)
5         for (int j = i + 1; j < array.Length; j++)
6           if (array[i] > array[j])
7             inversions++;
8       return inversions;
9     }
复制代码

这里,n 为数组 array 的大小,则基本步骤的执行数量约为 n*(n-1)/2,所以算法复杂度为 O(n2)。

示例代码(4):

复制代码
1     long SumMN(int n, int m)
2     {
3       long sum = 0;
4       for (int x = 0; x < n; x++)
5         for (int y = 0; y < m; y++)
6           sum += x * y;
7       return sum;
8     }
复制代码

给定规模 n 和 m,则基本步骤的执行数量为 n*m,所以算法复杂度为 O(n2)。

示例代码(5):

复制代码
1     decimal Sum3(int n)
2     {
3       decimal sum = 0;
4       for (int a = 0; a < n; a++)
5         for (int b = 0; b < n; b++)
6           for (int c = 0; c < n; c++)
7             sum += a * b * c;
8       return sum;
9     }
复制代码

这里,给定规模 n,则基本步骤的执行数量约为 n*n*n ,所以算法复杂度为 O(n3)。

示例代码(6):

复制代码
1     decimal Calculation(int n)
2     {
3       decimal result = 0;
4       for (int i = 0; i < (1 << n); i++)
5         result += i;
6       return result;
7     }
复制代码

这里,给定规模 n,则基本步骤的执行数量为 2n,所以算法复杂度为 O(2n)。

示例代码(7):

斐波那契数列:

  • Fib(0) = 0
  • Fib(1) = 1
  • Fib(n) = Fib(n-1) + Fib(n-2)

F() = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

复制代码
1     int Fibonacci(int n)
2     {
3       if (n <= 1)
4         return n;
5       else
6         return Fibonacci(n - 1) + Fibonacci(n - 2);
7     }
复制代码

这里,给定规模 n,计算 Fib(n) 所需的时间为计算 Fib(n-1) 的时间和计算 Fib(n-2) 的时间的和。

T(n<=1) = O(1)

T(n) = T(n-1) + T(n-2) + O(1)

                     fib(5)   
                 /                  
           fib(4)                fib(3)   
         /                      /     
     fib(3)      fib(2)         fib(2)    fib(1)
    /             /           /      

通过使用递归树的结构描述可知算法复杂度为 O(2n)。

示例代码(8):

复制代码
 1     int Fibonacci(int n)
 2     {
 3       if (n <= 1)
 4         return n;
 5       else
 6       {
 7         int[] f = new int[n + 1];
 8         f[0] = 0;
 9         f[1] = 1;
10 
11         for (int i = 2; i <= n; i++)
12         {
13           f[i] = f[i - 1] + f[i - 2];
14         }
15 
16         return f[n];
17       }
18     }
复制代码

同样是斐波那契数列,我们使用数组 f 来存储计算结果,这样算法复杂度优化为 O(n)。

示例代码(9):

复制代码
 1     int Fibonacci(int n)
 2     {
 3       if (n <= 1)
 4         return n;
 5       else
 6       {
 7         int iter1 = 0;
 8         int iter2 = 1;
 9         int f = 0;
10 
11         for (int i = 2; i <= n; i++)
12         {
13           f = iter1 + iter2;
14           iter1 = iter2;
15           iter2 = f;
16         }
17 
18         return f;
19       }
20     }
复制代码

同样是斐波那契数列,由于实际只有前两个计算结果有用,我们可以使用中间变量来存储,这样就不用创建数组以节省空间。同样算法复杂度优化为 O(n)。

示例代码(10):

通过使用矩阵乘方的算法来优化斐波那契数列算法。

复制代码
 1     static int Fibonacci(int n)
 2     {
 3       if (n <= 1)
 4         return n;
 5 
 6       int[,] f = { { 1, 1 }, { 1, 0 } };
 7       Power(f, n - 1);
 8 
 9       return f[0, 0];
10     }
11 
12     static void Power(int[,] f, int n)
13     {
14       if (n <= 1)
15         return;
16 
17       int[,] m = { { 1, 1 }, { 1, 0 } };
18 
19       Power(f, n / 2);
20       Multiply(f, f);
21 
22       if (n % 2 != 0)
23         Multiply(f, m);
24     }
25 
26     static void Multiply(int[,] f, int[,] m)
27     {
28       int x = f[0, 0] * m[0, 0] + f[0, 1] * m[1, 0];
29       int y = f[0, 0] * m[0, 1] + f[0, 1] * m[1, 1];
30       int z = f[1, 0] * m[0, 0] + f[1, 1] * m[1, 0];
31       int w = f[1, 0] * m[0, 1] + f[1, 1] * m[1, 1];
32 
33       f[0, 0] = x;
34       f[0, 1] = y;
35       f[1, 0] = z;
36       f[1, 1] = w;
37     }
复制代码

优化之后算法复杂度为 O(logn)。

示例代码(11):

在 C# 中更简洁的代码如下。

复制代码
1     static double Fibonacci(int n)
2     {
3       double sqrt5 = Math.Sqrt(5);
4       double phi = (1 + sqrt5) / 2.0;
5       double fn = (Math.Pow(phi, n) - Math.Pow(1 - phi, n)) / sqrt5;
6       return fn;
7     }
复制代码

本篇文章《算法复杂度分析》由 Dennis Gao 发表自博客园,任何未经作者同意的爬虫或人为转载均为耍流氓。

原文地址:https://www.cnblogs.com/niaowo/p/3817945.html