高可用Kubernetes集群-11. 部署kube-dns

参考文档:

  1. Github介绍:https://github.com/kubernetes/dns
  2. Github yaml文件:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns
  3. DNS for Services and Pods:https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
  4. Github示例:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns
  5. Configure stub domain and upstream DNS servers:https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/ 

Kube-DNS在集群范围内完成服务名到ClusterIP的解析,对服务进行访问,提供了服务发现机制的基本功能。 

一.环境

1. 基础环境

组件

版本

Remark

kubernetes

v1.9.2

 

KubeDNS

V1.4.8

服务发现机制同SkyDNS

2. 原理

  1. Kube-DNS以Pod的形式部署到kubernetes集群系统;
  2. Kube-DNS对SkyDNS进行封装优化,由4个容器变成3个;
  3. kubedns容器:基于skydns实现;监视k8s Service资源并更新DNS记录;替换etcd,使用TreeCache数据结构保存DNS记录并实现SkyDNS的Backend接口;接入SkyDNS,对dnsmasq提供DNS查询服务;
  4. dnsmasq容器:为集群提供DNS查询服务,即简易的dns server;设置kubedns为upstream;提供DNS缓存,降低kubedns负载,提高性能;
  5. sidecar容器:监控健康模块,同时向外暴露metrics记录;定期检查kubedns和dnsmasq的健康状态;为k8s活性检测提供HTTP API。

二.部署Kube-DNS

Kubernetes支持kube-dns以Cluster Add-On的形式运行。Kubernetes会在集群中调度一个DNS的Pod与Service。

1. 准备images

kubernetes部署Pod服务时,为避免部署时发生pull镜像超时的问题,建议提前将相关镜像pull到相关所有节点(实验),或搭建本地镜像系统。

  1. 基础环境已做了镜像加速,可参考:http://www.cnblogs.com/netonline/p/7420188.html
  2. 需要从gcr.io pull的镜像,已利用Docker Hub的"Create Auto-Build GitHub"功能(Docker Hub利用GitHub上的Dockerfile文件build镜像),在个人的Docker Hub build成功,可直接pull到本地使用。
# Pod内namespace共享的基础pause镜像;
# 在kubelet的启动参数中已指定pause镜像,Pull到本地后修改名称
[root@kubenode1 ~]# docker pull netonline/pause-amd64:3.0
[root@kubenode1 ~]# docker tag netonline/pause-amd64:3.0 gcr.io/google_containers/pause-amd64:3.0
[root@kubenode1 ~]# docker images

# kubedns
[root@kubenode1 ~]# docker pull netonline/k8s-dns-kube-dns-amd64:1.14.8

# dnsmasq-nanny
[root@kubenode1 ~]# docker pull netonline/k8s-dns-dnsmasq-nanny-amd64:1.14.8

# sidecar
[root@kubenode1 ~]# docker pull netonline/k8s-dns-sidecar-amd64:1.14.8

2. 下载kube-dns范本

# https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns
[root@kubenode1 ~]# mkdir -p /usr/local/src/yaml/kubedns
[root@kubenode1 ~]# cd /usr/local/src/yaml/kubedns
[root@kubenode1 kubedns]# wget -O kube-dns.yaml https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/dns/kube-dns/kube-dns.yaml.base

3. 配置kube-dns Service

# kube-dns将Service,ServiceAccount,ConfigMap,Deployment等4中服务放置在1个yaml文件中,以下章节分别针对各模块修改,红色加粗字体即修改部分;
# 对Pod yaml文件的编写这里不做展开,可另参考资料,如《Kubernetes权威指南》;
# 修改后的kube-dns.yaml:https://github.com/Netonline2016/kubernetes/blob/master/addons/kubedns/kube-dns.yaml

# clusterIP与kubelet启动参数--cluster-dns一致即可,在service cidr中预选1个地址做dns地址
[root@kubenode01 yaml]# vim kube-dns.yaml
apiVersion: v1
kind: Service
metadata:
  name: kube-dns
  namespace: kube-system
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "KubeDNS"
spec:
  selector:
    k8s-app: kube-dns
  clusterIP: 169.169.0.11
  ports:
  - name: dns
    port: 53
    protocol: UDP
  - name: dns-tcp
    port: 53
    protocol: TCP

4. 配置kube-dns ServiceAccount

# kube-dns ServiceAccount不用修改,kubernetes集群预定义的ClusterRoleBinding system:kube-dns已将kube-system(系统服务一般部署在此)namespace中的ServiceAccout kube-dns 与预定义的ClusterRole system:kube-dns绑定,而ClusterRole system:kube-dns具有访问kube-apiserver dns的api权限。
# RBAC授权请见:https://blog.frognew.com/2017/04/kubernetes-1.6-rbac.html
[root@kubenode1 ~]# kubectl get clusterrolebinding system:kube-dns -o yaml

[root@kubenode1 ~]# kubectl get clusterrole system:kube-dns -o yaml

5. 配置kube-dns ConfigMap

ConfigMap的典型用法是:

  1. 生成容器内的环境变量;
  2. 设置容器启动命令的启动参数(需设置为环境变量);
  3. 以volume的形式挂载为容器内部的文件或目录。

验证kube-dns功能不需要做修改,如果需要自定义DNS与上游DNS服务器,可对ConfigMap进行修改,见第四章节。

6. 配置kube-dns Deployment

# 第97,148,187行的三个容器的启动镜像;
# 第127,168,200,201行的域名,域名同kubelet启动参数中的”--cluster-domain”对应,注意域名”cluster.local.”后的“.”
[root@kubenode1 kubedns]# vim kube-dns.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: kube-dns
  namespace: kube-system
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  # replicas: not specified here:
  # 1. In order to make Addon Manager do not reconcile this replicas parameter.
  # 2. Default is 1.
  # 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
  strategy:
    rollingUpdate:
      maxSurge: 10%
      maxUnavailable: 0
  selector:
    matchLabels:
      k8s-app: kube-dns
  template:
    metadata:
      labels:
        k8s-app: kube-dns
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ''
    spec:
      tolerations:
      - key: "CriticalAddonsOnly"
        operator: "Exists"
      volumes:
      - name: kube-dns-config
        configMap:
          name: kube-dns
          optional: true
      containers:
      - name: kubedns
        image: netonline/k8s-dns-kube-dns-amd64:1.14.8
        resources:
          # TODO: Set memory limits when we've profiled the container for large
          # clusters, then set request = limit to keep this container in
          # guaranteed class. Currently, this container falls into the
          # "burstable" category so the kubelet doesn't backoff from restarting it.
          limits:
            memory: 170Mi
          requests:
            cpu: 100m
            memory: 70Mi
        livenessProbe:
          httpGet:
            path: /healthcheck/kubedns
            port: 10054
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
        readinessProbe:
          httpGet:
            path: /readiness
            port: 8081
            scheme: HTTP
          # we poll on pod startup for the Kubernetes master service and
          # only setup the /readiness HTTP server once that's available.
          initialDelaySeconds: 3
          timeoutSeconds: 5
        args:
        - --domain=cluster.local.
        - --dns-port=10053
        - --config-dir=/kube-dns-config
        - --v=2
        env:
        - name: PROMETHEUS_PORT
          value: "10055"
        ports:
        - containerPort: 10053
          name: dns-local
          protocol: UDP
        - containerPort: 10053
          name: dns-tcp-local
          protocol: TCP
        - containerPort: 10055
          name: metrics
          protocol: TCP
        volumeMounts:
        - name: kube-dns-config
          mountPath: /kube-dns-config
      - name: dnsmasq
        image: netonline/k8s-dns-dnsmasq-nanny-amd64:1.14.8
        livenessProbe:
          httpGet:
            path: /healthcheck/dnsmasq
            port: 10054
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
        args:
        - -v=2
        - -logtostderr
        - -configDir=/etc/k8s/dns/dnsmasq-nanny
        - -restartDnsmasq=true
        - --
        - -k
        - --cache-size=1000
        - --no-negcache
        - --log-facility=-
        - --server=/cluster.local./127.0.0.1#10053
        - --server=/in-addr.arpa/127.0.0.1#10053
        - --server=/ip6.arpa/127.0.0.1#10053
        ports:
        - containerPort: 53
          name: dns
          protocol: UDP
        - containerPort: 53
          name: dns-tcp
          protocol: TCP
        # see: https://github.com/kubernetes/kubernetes/issues/29055 for details
        resources:
          requests:
            cpu: 150m
            memory: 20Mi
        volumeMounts:
        - name: kube-dns-config
          mountPath: /etc/k8s/dns/dnsmasq-nanny
      - name: sidecar
        image: netonline/k8s-dns-sidecar-amd64:1.14.8
        livenessProbe:
          httpGet:
            path: /metrics
            port: 10054
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
        args:
        - --v=2
        - --logtostderr
        - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local.,5,SRV
        - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local.,5,SRV
        ports:
        - containerPort: 10054
          name: metrics
          protocol: TCP
        resources:
          requests:
            memory: 20Mi
            cpu: 10m
      dnsPolicy: Default  # Don't use cluster DNS.
      serviceAccountName: kube-dns

7. 启动kube-dns

[root@kubenode1 ~]# cd /usr/local/src/yaml/kubedns/
[root@kubenode1 kubedns]# kubectl create -f kube-dns.yaml

三.验证Kube-DNS

1. kube-dns Deployment&Service&Pod

# kube-dns Pod 3个容器已”Ready”,服务,deployment等也正常启动
[root@kubenode1 kubedns]# kubectl get pod -n kube-system -o wide
[root@kubenode1 kubedns]# kubectl get service -n kube-system -o wide
[root@kubenode1 kubedns]# kubectl get deployment -n kube-system -o wide

2. kube-dns 查询

# pull测试镜像
[root@kubenode1 ~]# docker pull radial/busyboxplus:curl

# 启动测试Pod并进入Pod容器
[root@kubenode1 ~]# kubectl run curl --image=radial/busyboxplus:curl -i --tty

# Pod容器中查看/etc/resolv.conf,dns记录已写入文件;
# nslookup可查询到kubernetes集群系统的服务ip
[ root@curl-545bbf5f9c-hxml9:/ ]$ cat /etc/resolv.conf 
[ root@curl-545bbf5f9c-hxml9:/ ]$ nslookup kubernetes.default

四.自定义DNS与上游DNS服务器

从kubernetes v1.6开始,用户可以在集群内配置私有DNS区域(一般称为存根域Stub Domain)与外部上游域名服务。

1. 原理

  1. Pod定义中支持两种DNS策略:Default与ClusterFirst,dnsPolicy默认为ClusterFirst;如果将dnsPolicy设置为Default,域名解析配置完全从Pod所在的节点(/etc/resolv.conf)继承而来;
  2. 当Pod的dnsPolicy设置为ClusterFirst时,DNS查询首先被发送到kube-dns的DNS缓存层;
  3. 在DNS缓存层检查域名后缀,根据域名后缀发送到集群自身的DNS服务器,或者自定义的stub domain,或者上游域名服务器。

2. 自定义DNS方式

# 集群管理员可使用ConfigMap指定自定义的存根域域上游DNS服务器;
[root@kubenode1 ~]# cd /usr/local/src/yaml/kubedns/

# 直接修改kube-dns.yaml模版的ConfigMap服务部分
# stubDomains:可选项,存根域定义,json格式;key为DNS后缀,value是1个json数组,表示1组DNS服务器地址;目标域名服务器可以是kubernetes服务名;多个自定义dns记录采用”,”分隔;
# upstreamNameservers:DNS地址组成的数组,最多指定3个ip地址,json格式;如果指定此值,从节点的域名服务设置(/etc/resolv.conf)继承来的值会被覆盖
[root@kubenode1 kubedns]# vim kube-dns.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-dns
  namespace: kube-system
  labels:
    addonmanager.kubernetes.io/mode: EnsureExists
data:
  stubDomains: |
    {"out.kubernetes": ["172.20.1.201"]}
  upstreamNameservers: |
    ["114.114.114.114", "223.5.5.5"]

3. 重建kube-dns ConfigMap

# 先删除原kube-dns,再创建新kube-dns;
# 也可以只删除原kube-dns中的ConfigMap服务,再单独创建新的 ConfigMap服务
[root@kubenode1 kubedns]# kubectl delete -f -n kube-dns -n kube-system
[root@kubenode1 kubedns]# kubectl create -f kube-dns.yaml

# 查看dnsmasq日志,stub domain与upstreamserver已生效;
# kubedns与sidecar两个日志也有stub domain与upstreamserver生效的输出
[root@kubenode1 kubedns]# kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c dnsmasq

4. 自定义dns服务器

# 在configmap中自定义的stub domain 172.20.1.201上安装dnsmasq服务
[root@hanode01 ~]# yum install dnsmasq -y

# 生成自定义的DNS记录文件
[root@hanode01 ~]# echo "192.168.100.11 server.out.kubernetes" > /tmp/hosts

# 启动DNS服务;
# -q:输出查询记录;
# -d:以debug模式启动,前台运行,观察输出日志;
# -h:不使用/etc/hosts;
# -R:不使用/etc/resolv.conf;
# -H:使用自定义的DNS记录文件;
# 启动输出日志中warning提示没有设置上游DNS服务器;同时读入自定义DNS记录文件
[root@hanode01 ~]# dnsmasq -q -d -h -R -H /tmp/hosts

# iptables放行udp 53端口
[root@hanode01 ~]# iptables -I INPUT -m state --state NEW -m udp -p udp --dport 53 -j ACCEPT

5. 启动Pod

# 下载镜像
[root@kubenode1 ~]# docker pull busybox

# 配置Pod yaml文件;
# dnsPolicy设置为ClusterFirst,默认也是ClusterFirst
[root@kubenode1 ~]# touch dnstest.yaml
[root@kubenode1 ~]# vim dnstest.yaml
apiVersion: v1
kind: Pod
metadata:
  name: dnstest
  namespace: default
spec:
  dnsPolicy: ClusterFirst
  containers:
  - name: busybox
    image: busybox
    command:
      - sleep
      - "3600"
    imagePullPolicy: IfNotPresent
  restartPolicy: Always

# 创建Pod
[root@kubenode1 ~]# kubectl create -f dnstest.yaml

6. 验证自定义的DNS配置

# nslookup查询server.out.kubernetes,返回定义的ip地址
[root@kubenode1 ~]# kubectl exec -it dnstest -- nslookup server.out.kubernetes

观察stub domain 172.20.1.201上dnsmasq服务的输出:kube节点172.30.200.23(Pod所在的节点,flannel网络,snat出节点)对server.out.kubenetes的查询,dnsmasq返回预定义的主机地址。

原文地址:https://www.cnblogs.com/netonline/p/8858809.html