二叉树

1.二叉树

1. 定义:

是每个节点最多只能有两个儿子的树。

2.应用

查找树:所有节点左小右大

平衡树:左右子树深度差1

判定数:分支查找树(例如12个球如何只称3次就能分出轻重)

带权树:路径带权

最优树:带权路径长度最短的树,通信中的压缩编码

2.查找二叉树

1.定义

为每个节点指定一个关键值,每个节点的左子树的关键值都小于节点的关键值,而右子树的关键值都大于节点的关键值。

或者是一颗空树,或者是具有如下性质的非空二叉树:

(1)若左子树不为空,左子树的所有结点的值均小于根的值;

(2)若右子树不为空,右子树的所有结点均大于根的值;

(3)它的左右子树也分别为二叉排序树。

平均深度为O(logN)。

2. 查找二叉树的实现

1.fatal.h

#include <stdio.h>
#include<stdlib.h>

#define Error(str) FatalError(str)
#define FatalError(str) fprintf(stderr,"%s
",str),system("pause"),exit(1)

  

2.searchtree.h

#include<stdio.h>
typedef int ElementType;

#ifndef _Tree_H

struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;

SearchTree MakeEmpty(SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMin(SearchTree T);
Position FindMax(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
SearchTree Delete(ElementType X, SearchTree T);
ElementType Retrieve(Position P);
void Preorder(SearchTree T);

#endif

  

3.searchtree.c

#include "searchtree.h"
#include "fatal.h"
#include <stdio.h>
#include <stdlib.h>

struct TreeNode
{
	ElementType Element;
	SearchTree Left;
	SearchTree Right;
};


SearchTree MakeEmpty(SearchTree T)
{
	if (T!=NULL)
	{
		MakeEmpty(T->Left);
		MakeEmpty(T->Right);
		free(T);
	}
	return NULL;
}

/*

  在二叉排序树b中查找x的过程为:

  1. 若b是空树,则搜索失败,否则:
  2. 若x小于b的根节点的数据域之值,则搜索左子树;否则:
  3. 若x大于b的根节点的数据域之值,则搜索右子树;否则:
  4. x等于b的根节点数据域的值,查找成功。
*/
Position Find(ElementType X, SearchTree T)
{
	if (T==NULL)
	{
		return NULL;
	}
	if (X < T->Element)
	{
		return Find(X, T->Left);
	}
	else if (X > T->Element)
	{
		return Find(X, T->Right);
	}
	else
	{
		return T;
	}
}

Position FindMin(SearchTree T)
{
	if (T == NULL)
	{
		return NULL;
	}
	else if (T->Left == NULL)
	{
		return T;
	}
	else
	{
		return FindMin(T->Left);
	}
}

Position FindMax(SearchTree T)
{
	//if (T == NULL)
	//{
	//	return NULL;
	//}
	//else if (T->Right == NULL)
	//{
	//	return T;
	//}
	//else
	//{
	//	return FindMax(T->Right);
	//}
	if (T != NULL)
	{
		while (T->Right != NULL)
		{
			T = T->Right;
		}
	}
	return T;
}

ElementType Retrieve(Position P)
{
	return P->Element;
}

/*

  向一个二叉排序树b中插入一个结点s,过程为:

  1. 若b是空树,则将s所指结点作为根结点插入,否则:
  2. 若s->data小于b的根结点的数据域之值,则把s所指的节点插入到左子树,否则:
  3. 若s->data大于b的根结点的数据域之值,则把s所指结点插入到右子树中,否则:
  4. 把s->data等于根节点的数据域的值,已经存在,什么也不做。
*/
SearchTree Insert(ElementType X, SearchTree T)
{
	if (T == NULL)
	{
		T = malloc(sizeof(struct TreeNode));
		if (T == NULL)
		{
			FatalError("out of space!!!");
		}
		else
		{
			T->Element = X;
			T->Left = T->Right = NULL;
		}
	}
	else if (X < T->Element)
		T->Left = Insert(X, T->Left);
	else if (X > T->Element)
		T->Right = Insert(X, T->Right);
	return T;
}

/*
1. 若x小于根节点的数据域的值,则删除左子树中X的值,否则
2. 若x大于根节点的数据域的值,则删除右子树的x的值,否则
3. 若根具有左子树和右子树,则删去根节点,从右子树的最小值作为新的根节点,并删去右子树的最小值,或者从左子树的最大值最为新的根节点,并删去左子树的最大值,否则
4. 若根只有一个子树,则删去根节点,将子树返回,否则
5. 该节点为叶子节点,直接删除
*/ SearchTree Delete(ElementType X, SearchTree T) { Position TmpCell; if (T == NULL) { Error("Element not found"); } else if (X < T->Element) T->Left = Delete(X, T->Left); else if (X>T->Right) T->Right = Delete(X, T->Right); else { if (T->Left && T->Right) { TmpCell = FindMin(T->Right); T->Element = TmpCell->Element; T->Right = Delete(T->Element, T->Right); } else { TmpCell = T; if (T->Left == NULL) { T = T->Right; } else if (T->Right == NULL) { T = T->Left; } free(TmpCell); } } return T; } void Preorder(SearchTree T) { if (T == NULL) { Error("Tree not found"); } if (T->Left != NULL) { Preorder(T->Left); } if (T->Right != NULL) { Preorder(T->Right); } printf("%d ", Retrieve(T)); }

  

4.testsearchtree.c

#include "fatal.h"
#include "searchtree.h"
#include <stdio.h>
#include <stdlib.h>


void main1()
{
	SearchTree T = NULL;
	T = MakeEmpty(T);
	int i = 0;
	for (i = 0; i < 10;i++)
	{
		T= Insert(i, T);
	}
	Preorder(T);

	for (i = 0; i < 10; i++)
	{
		T = Delete(i, T);
	}

	system("pause");
}


main()
{
	SearchTree T;
	Position P;
	int i;
	int j = 0;

	T = MakeEmpty(NULL);
	for (i = 0; i < 50; i++)
		T = Insert(i, T);
	//for (i = 0; i < 50; i++, j = (j + 7) % 50)
	//	T = Insert(j, T);

	Preorder(T);

	for (i = 0; i < 50; i++)
		if ((P = Find(i, T)) == NULL /*|| Retrieve(P) != i*/)
			printf("Error at %d
", i);

	for (i = 0; i < 50; i ++)
		T = Delete(i, T);

	//for (i = 1; i < 50; i += 2)
	//	if ((P = Find(i, T)) == NULL || Retrieve(P) != i)
	//		printf("Error at %d
", i);
	//for (i = 0; i < 50; i += 2)
	//	if ((P = Find(i, T)) != NULL)
	//		/*printf("Error at %d
", i);*/

	printf("Min is %d, Max is %d
", Retrieve(FindMin(T)),
		Retrieve(FindMax(T)));

	system("pause");
	return 0;
}

3. 平衡二叉树

1.定义

一棵AVL树是其每个节点的左子树和右左子树的高度最多差1的二叉查找树。

节点的平衡因子BF=左子树深度-右子树深度。

树的深度保持为O(logN)。

2.平衡二叉树的实现

1. avl.h

#include <stdio.h>
typedef int ElementType;

#ifndef _AvlTree_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;

AvlTree MakeEmpty(AvlTree T);
Position Find(ElementType X, AvlTree T);
Position FindMin(AvlTree T);
Position FindMax(AvlTree T);
AvlTree Insert(ElementType X, AvlTree T);
AvlTree Delete(ElementType X, AvlTree T);
ElementType Retrieve(Position P);

#endif

  

2.avl.c

#include "avl.h"
#include "fatal.h"
#include <stdio.h>

struct AvlNode
{
	ElementType Element;
	AvlTree Left;
	AvlTree Right;
	int Height;
};

AvlTree MakeEmpty(AvlTree T)
{
	if (T != NULL)
	{
		MakeEmpty(T->Left);
		MakeEmpty(T->Right);
		free(T);
	}
	return NULL;
}

Position Find(ElementType X, AvlTree T)
{
	if (T == NULL)
	{
		return NULL;
	}
	if (X < T->Element)
	{
		return Find(X, T->Left);
	}
	if (X>T->Element)
	{
		return Find(X, T->Right);
	}
	return T;
}

Position FindMin(AvlTree T)
{
	if (T == NULL)
	{
		return NULL;
	}
	if (T->Left == NULL)
	{
		return T;
	}
	return FindMin(T->Left);
}

Position FindMax(AvlTree T)
{
	if (T!= NULL)
	{
		while (T->Right != NULL)
		{
			T = T->Right;
		}
	}
	return T;
}
static int Height(Position P)
{
	if (P == NULL)
	{
		return -1;
	}
	else
	{
		return P->Height;
	}
}

static Position SingleRoateWithLeft(Position K2)
{
	Position K1;
	K1 = K2->Left;
	K2->Left = K1->Right;
	K2->Height = max(Height(K2->Left), Height(K2->Right)) + 1;
	K1->Height = max(Height(K1->Left), K2->Height) + 1;
	return K1;
}
static Position SingleRoateWithRight(Position K1)
{
	Position K2;
	K2 = K1->Right;
	K1->Right = K2->Left;
	K2->Left = K1;

	K1->Height = max(Height(K1->Left), Height(K1->Right)) + 1;
	K2->Height = max(K1->Height, Height(K2->Right)) + 1;

	return K2;
}

static Position DoubleRoateWithLeft(Position K3)
{
	K3->Left = SingleRoateWithRight(K3->Left);
	return SingleRoateWithLeft(K3);
}

static Position DoubleRoateWithRight(Position K1)
{
	K1->Right = SingleRoateWithLeft(K1->Right);
	return SingleRoateWithRight(K1);
}

AvlTree Insert(ElementType X, AvlTree T)
{
	//空树
	if (T== NULL)
	{
		T = malloc(sizeof(struct AvlNode));
		if (T == NULL)
		{
			FatalError("out of space!!!");
		}
		else
		{
			T->Element = X;
			T->Height = 0;
			T->Left = T->Right = NULL;
		}
	}
	//X小于根节点的数据
	else if (X < T->Element)
	{
		T->Left = Insert(X, T->Left);
		if (Height(T->Left) - Height(T->Right) == 2)
		{
			if (X < T->Left->Element)
			{
				T = SingleRoateWithLeft(T);
			}
			else
				T = DoubleRoateWithLeft(T);
		}
	}
	//X大于根节点数据
	else if (X > T->Element)
	{
		T->Right = Insert(X, T->Right);
		if (Height(T->Right)- Height(T->Left) == 2)
		{
			if (X > T->Right->Element)
			{
				T = SingleRoateWithRight(T);
			}
			else
			{
				T = DoubleRoateWithRight(T);
			}
		}

	}
	//X等于根节点的数据,什么也不用做

	T->Height = max(Height(T->Left), Height(T->Right)) + 1;
	return T;
}

ElementType Retrieve(Position P)
{
	return P->Element;
}

AvlTree Delete(ElementType X, AvlTree T)
{

}

void Inorder(AvlTree T)
{
	if (T == NULL)
	{
		Error("Empty Tree
");
	}
	if (T ->Left != NULL)
	{
		Inorder(T->Left);
	}
	printf("%d	", T->Element);
	if (T->Right)
	{
		Inorder(T->Right);
	}

	printf("
");
}

  

3.testavl.c

#include "avl.h"
#include "fatal.h"
#include <stdio.h>
#include <stdlib.h>

void main()
{
	AvlTree T = NULL;
	T = MakeEmpty(T);

	for (int i = 0; i < 10; i++)
	{
		T = Insert(i, T);
	}

	Inorder(T);

	printf("Max = %d
", Retrieve(FindMax(T)));
	printf("Min = %d
", Retrieve(FindMin(T)));

	for (int i = 0; i < 10; i++)
	{
		if (Find(i,T) == NULL)
		{
			FatalError("Find error
");
		}
	}

	system("pause");
}

  

4. 参考资源

http://blog.csdn.net/hguisu/article/details/7686515

http://blog.csdn.net/zealot_2002/article/details/8244436

原文地址:https://www.cnblogs.com/my-cat/p/5971947.html