1^2+2^2+……+n^2的公式证明

求^2就从^3入手,求^3就从^4入手,求^t就从^(t+1)入手 
因为(n+1)^3=n^3+3n^2+3n+1 
所以2^3=1^3+3*1^2+3*1+1 
3^3=2^3+3*2^2+3*2+1 
…… 
(n+1)^3=n^3+3n^2+2n+1 
所以2^3+3^3+……+(n+1)^3=1^3+2^3+……+3*(1^2+2^2+……+^2)+3(1+2+……+n)+(1+1+……+1) 
所以3(1^2+2^2+……+n^2)=n^3+3n^2+2n+1-a-3-[n(n+1)]/2-n 
所以S(An)=1^2+2^2+……+n^2=(n^3+3n^2+3n)/3-n(n+1)/2-n/3=n(n+1)(2n+1)/6

原文地址:https://www.cnblogs.com/mubu/p/6090738.html