010 JVM类加载

转自http://www.importnew.com/23742.html

前言

我们知道我们写的程序经过编译后成为了.class文件,.class文件中描述了类的各种信息,最终都需要加载到虚拟机之后才能运行和使用。而虚拟机如何加载这些.class文件?.class文件的信息进入到虚拟机后会发生什么变化?这些都是本文要讲的内容,文章将会讲解加载类加载的每个阶段Java虚拟机需要做什么事(加粗标红)。

类使用的7个阶段

类从被加载到虚拟机内存中开始,到卸载出内存,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initiallization)、使用(Using)和卸载(Unloading)这7个阶段。其中验证、准备、解析3个部分统称为连接(Linking),这七个阶段的发生顺序如下图:

图中,加载、验证、准备、初始化、卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段不一定:它在某些情况下可以初始化阶段之后在开始,这是为了支持Java语言的运行时绑定(也称为动态绑定)。接下来讲解加载、验证、准备、解析、初始化五个步骤,这五个步骤组成了一个完整的类加载过程。使用没什么好说的,卸载属于GC的工作,在之前GC的文章中已经有所提及了。

加载Loading

加载是类加载的第一个阶段。有两种时机会触发类加载:

1、预加载。虚拟机启动时加载,加载的是JAVA_HOME/lib/下的rt.jar下的.class文件,这个jar包里面的内容是程序运行时非常常常用到的,像java.lang.*、java.util.*、java.io.*等等,因此随着虚拟机一起加载。要证明这一点很简单,写一个空的main函数,设置虚拟机参数为”-XX:+TraceClassLoading”来获取类加载信息,运行一下:

1
2
3
4
5
6
7
8
9
10
11
12
[Opened E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.Object from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.io.Serializable from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.Comparable from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.CharSequence from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.String from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.reflect.GenericDeclaration from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.reflect.Type from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.reflect.AnnotatedElement from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.Class from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
[Loaded java.lang.Cloneable from E:MyEclipse10Commoninarycom.sun.java.jdk.win32.x86_64_1.6.0.013jrelib t.jar]
...

2、运行时加载。虚拟机在用到一个.class文件的时候,会先去内存中查看一下这个.class文件有没有被加载,如果没有就会按照类的全限定名来加载这个类。

那么,加载阶段做了什么,其实加载阶段做了有三件事情:

  • 获取.class文件的二进制流
  • 将类信息、静态变量、字节码、常量这些.class文件中的内容放入方法区中
  • 在内存中生成一个代表这个.class文件的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。一般这个Class是在堆里的,不过HotSpot虚拟机比较特殊,这个Class对象是放在方法区中的

虚拟机规范对这三点的要求并不具体,因此虚拟机实现与具体应用的灵活度都是相当大的。例如第一条,根本没有指明二进制字节流要从哪里来、怎么来,因此单单就这一条,就能变出许多花样来:

  • 从zip包中获取,这就是以后jar、ear、war格式的基础
  • 从网络中获取,典型应用就是Applet
  • 运行时计算生成,典型应用就是动态代理技术
  • 由其他文件生成,典型应用就是JSP,即由JSP生成对应的.class文件
  • 从数据库中读取,这种场景比较少见

总而言之,在类加载整个过程中,这部分是对于开发者来说可控性最强的一个阶段。

验证

连接阶段的第一步,这一阶段的目的是为了确保.class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全

Java语言本身是相对安全的语言(相对C/C++来说),但是前面说过,.class文件未必要从Java源码编译而来,可以使用任何途径产生,甚至包括用十六进制编辑器直接编写来产生.class文件。在字节码语言层面上,Java代码至少从语义上是可以表达出来的。虚拟机如果不检查输入的字节流,对其完全信任的话,很可能会因为载入了有害的字节流而导致系统崩溃,所以验证是虚拟机对自身保护的一项重要工作。

验证阶段将做一下几个工作,具体就不细讲了,这是虚拟机实现层面的问题:

1、文件格式验证

这个地方要说一点和开发者相关的。.class文件的第5~第8个字节表示的是该.class文件的主次版本号,验证的时候会对这4个字节做一个验证,高版本的JDK能向下兼容以前版本的.class文件,但不能运行以后的class文件,即使文件格式未发生任何变化,虚拟机也必须拒绝执行超过其版本号的.class文件。举个具体的例子,如果一段.java代码是在JDK1.6下编译的,那么JDK1.6、JDK1.7的环境能运行这个.java代码生成的.class文件,但是JDK1.5、JDK1.4乃更低的JDK版本是无法运行这个.java代码生成的.class文件的。如果运行,会抛出java.lang.UnsupportedClassVersionError,这个小细节,务必注意。

2、元数据验证

3、字节码验证

4、符号引用验证

准备

准备阶段是正式为类变量分配内存并设置其初始值的阶段,这些变量所使用的内存都将在方法区中分配。关于这点,有两个地方注意一下:

1、这时候进行内存分配的仅仅是类变量(被static修饰的变量),而不是实例变量,实例变量将会在对象实例化的时候随着对象一起分配在Java堆中

2、这个阶段赋初始值的变量指的是那些不被final修饰的static变量,比如”public static int value = 123;”,value在准备阶段过后是0而不是123,给value赋值为123的动作将在初始化阶段才进行;比如”public static final int value = 123;”就不一样了,在准备阶段,虚拟机就会给value赋值为123。

各个数据类型的零值如下图:

解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。来了解一下符号引用和直接引用有什么区别:

1、符号引用。

这个其实是属于编译原理方面的概念,符号引用包括了下面三类常量:

  • 类和接口的全限定名
  • 字段的名称和描述符
  • 方法的名称和描述符

这么说可能不太好理解,结合实际看一下,写一段很简单的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package com.xrq.test6;
 
public class TestMain
{
    private static int i;
    private double d;
     
    public static void print()
    {
         
    }
     
    private boolean trueOrFalse()
    {
        return false;
    }
}

用javap把这段代码的.class反编译一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Constant pool:
   #1 = Class              #2             //  com/xrq/test6/TestMain
   #2 = Utf8               com/xrq/test6/TestMain
   #3 = Class              #4             //  java/lang/Object
   #4 = Utf8               java/lang/Object
   #5 = Utf8               i
   #6 = Utf8               I
   #7 = Utf8               d
   #8 = Utf8               D
   #9 = Utf8               <init>
  #10 = Utf8               ()V
  #11 = Utf8               Code
  #12 = Methodref          #3.#13         //  java/lang/Object."<init>":()V
  #13 = NameAndType        #9:#10         //  "<init>":()V
  #14 = Utf8               LineNumberTable
  #15 = Utf8               LocalVariableTable
  #16 = Utf8               this
  #17 = Utf8               Lcom/xrq/test6/TestMain;
  #18 = Utf8               print
  #19 = Utf8               trueOrFalse
  #20 = Utf8               ()Z
  #21 = Utf8               SourceFile
  #22 = Utf8               TestMain.java

看到Constant Pool也就是常量池中有22项内容,其中带”Utf8″的就是符号引用。比如#2,它的值是”com/xrq/test6/TestMain”,表示的是这个类的全限定名;又比如#5为i,#6为I,它们是一对的,表示变量时Integer(int)类型的,名字叫做i;#6为D、#7为d也是一样,表示一个Double(double)类型的变量,名字为d;#18、#19表示的都是方法的名字。

那其实总而言之,符号引用和我们上面讲的是一样的,是对于类、变量、方法的描述。符号引用和虚拟机的内存布局是没有关系的,引用的目标未必已经加载到内存中了。

2、直接引用

直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同的虚拟机示例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经存在在内存中了。

初始化

初始化阶段是类加载过程的最后一步,初始化阶段是真正执行类中定义的Java程序代码(或者说是字节码)的过程。初始化过程是一个执行类构造器<clinit>()方法的过程,根据程序员通过程序制定的主观计划去初始化类变量和其它资源。把这句话说白一点,其实初始化阶段做的事就是给static变量赋予用户指定的值以及执行静态代码块

注意一下,虚拟机会保证类的初始化在多线程环境中被正确地加锁、同步,即如果多个线程同时去初始化一个类,那么只会有一个类去执行这个类的<clinit>()方法,其他线程都要阻塞等待,直至活动线程执行<clinit>()方法完毕。因此如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞。不过其他线程虽然会阻塞,但是执行<clinit>()方法的那条线程退出<clinit>()方法后,其他线程不会再次进入<clinit>()方法了,因为同一个类加载器下,一个类只会初始化一次。实际应用中这种阻塞往往是比较隐蔽的,要小心。

Java虚拟机规范严格规定了有且只有5种场景必须立即对类进行初始化,这4种场景也称为对一个类进行主动引用(其实还有一种场景,不过暂时我还没弄明白这种场景的意思,就先不写了):

1、使用new关键字实例化对象、读取或者设置一个类的静态字段(被final修饰的静态字段除外)、调用一个类的静态方法的时候

2、使用java.lang.reflect包中的方法对类进行反射调用的时候

3、初始化一个类,发现其父类还没有初始化过的时候

4、虚拟机启动的时候,虚拟机会先初始化用户指定的包含main()方法的那个类

除了上面4种场景外,所有引用类的方式都不会触发类的初始化,称为被动引用,接下来看下被动引用的几个例子:

1、子类引用父类静态字段,不会导致子类初始化。至于子类是否被加载、验证了,前者可以通过”-XX:+TraceClassLoading”来查看

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class SuperClass
{
    public static int value = 123;
     
    static
    {
        System.out.println("SuperClass init");
    }
}
 
public class SubClass extends SuperClass
{
    static
    {
        System.out.println("SubClass init");
    }
}
 
public class TestMain
{
    public static void main(String[] args)
    {
        System.out.println(SubClass.value);
    }
}

运行结果为

1
2
SuperClass init
123

2、通过数组定义引用类,不会触发此类的初始化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class SuperClass
{
    public static int value = 123;
     
    static
    {
        System.out.println("SuperClass init");
    }
}
 
public class TestMain
{
    public static void main(String[] args)
    {
        SuperClass[] scs = new SuperClass[10];
    }
}

运行结果为

 

3、引用静态常量时,常量在编译阶段会存入类的常量池中,本质上并没有直接引用到定义常量的类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class ConstClass
{
    public static final String HELLOWORLD =  "Hello World";
     
    static
    {
        System.out.println("ConstCLass init");
    }
}
 
public class TestMain
{
    public static void main(String[] args)
    {
        System.out.println(ConstClass.HELLOWORLD);
    }
}

运行结果为

1
Hello World

在编译阶段通过常量传播优化,常量HELLOWORLD的值”Hello World”实际上已经存储到了NotInitialization类的常量池中,以后NotInitialization对常量ConstClass.HELLOWORLD的引用实际上都被转化为NotInitialization类对自身常量池的引用了。也就是说,实际上的NotInitialization的Class文件中并没有ConstClass类的符号引用入口,这两个类在编译成Class之后就不存在任何联系了。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1、什么是类的加载

类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构。类的加载的最终产品是位于堆区中的Class对象,Class对象封装了类在方法区内的数据结构,并且向Java程序员提供了访问方法区内的数据结构的接口。

类加载器并不需要等到某个类被“首次主动使用”时再加载它,JVM规范允许类加载器在预料某个类将要被使用时就预先加载它,如果在预先加载的过程中遇到了.class文件缺失或存在错误,类加载器必须在程序首次主动使用该类时才报告错误(LinkageError错误)如果这个类一直没有被程序主动使用,那么类加载器就不会报告错误

1
2
3
4
5
6
加载.class文件的方式
– 从本地系统中直接加载
– 通过网络下载.class文件
– 从zip,jar等归档文件中加载.class文件
– 从专有数据库中提取.class文件
– 将Java源文件动态编译为.class文件

2、类的生命周期

其中类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。在这五个阶段中,加载、验证、准备和初始化这四个阶段发生的顺序是确定的,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)。另外注意这里的几个阶段是按顺序开始,而不是按顺序进行或完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。

加载:查找并加载类的二进制数据

加载时类加载过程的第一个阶段,在加载阶段,虚拟机需要完成以下三件事情:

1、通过一个类的全限定名来获取其定义的二进制字节流。

2、将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

3、在Java堆中生成一个代表这个类的java.lang.Class对象,作为对方法区中这些数据的访问入口。

相对于类加载的其他阶段而言,加载阶段(准确地说,是加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,因为开发人员既可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。

加载阶段完成后,虚拟机外部的 二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在Java堆中也创建一个java.lang.Class类的对象,这样便可以通过该对象访问方法区中的这些数据。

连接

– 验证:确保被加载的类的正确性

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。验证阶段大致会完成4个阶段的检验动作:

文件格式验证:验证字节流是否符合Class文件格式的规范;例如:是否以0xCAFEBABE开头、主次版本号是否在当前虚拟机的处理范围之内、常量池中的常量是否有不被支持的类型。

元数据验证:对字节码描述的信息进行语义分析(注意:对比javac编译阶段的语义分析),以保证其描述的信息符合Java语言规范的要求;例如:这个类是否有父类,除了java.lang.Object之外。

字节码验证:通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。

符号引用验证:确保解析动作能正确执行。

验证阶段是非常重要的,但不是必须的,它对程序运行期没有影响,如果所引用的类经过反复验证,那么可以考虑采用-Xverifynone参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

– 准备:为类的静态变量分配内存,并将其初始化为默认值

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

1、这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。

2、这里所设置的初始值通常情况下是数据类型默认的零值(如0、0L、null、false等),而不是被在Java代码中被显式地赋予的值。

假设一个类变量的定义为:public static int value = 3;

那么变量value在准备阶段过后的初始值为0,而不是3,因为这时候尚未开始执行任何Java方法,而把value赋值为3的putstatic指令是在程序编译后,存放于类构造器<clinit>()方法之中的,所以把value赋值为3的动作将在初始化阶段才会执行。

这里还需要注意如下几点:

  • · 对基本数据类型来说,对于类变量(static)和全局变量,如果不显式地对其赋值而直接使用,则系统会为其赋予默认的零值,而对于局部变量来说,在使用前必须显式地为其赋值,否则编译时不通过。
  • · 对于同时被static和final修饰的常量,必须在声明的时候就为其显式地赋值,否则编译时不通过;而只被final修饰的常量则既可以在声明时显式地为其赋值,也可以在类初始化时显式地为其赋值,总之,在使用前必须为其显式地赋值,系统不会为其赋予默认零值。
  • · 对于引用数据类型reference来说,如数组引用、对象引用等,如果没有对其进行显式地赋值而直接使用,系统都会为其赋予默认的零值,即null。
  • · 如果在数组初始化时没有对数组中的各元素赋值,那么其中的元素将根据对应的数据类型而被赋予默认的零值。

3、如果类字段的字段属性表中存在ConstantValue属性,即同时被final和static修饰,那么在准备阶段变量value就会被初始化为ConstValue属性所指定的值。

假设上面的类变量value被定义为: public static final int value = 3;

编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为3。回忆上一篇博文中对象被动引用的第2个例子,便是这种情况。我们可以理解为static final常量在编译期就将其结果放入了调用它的类的常量池中

– 解析:把类中的符号引用转换为直接引用

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行。符号引用就是一组符号来描述目标,可以是任何字面量。

直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。

初始化

初始化,为类的静态变量赋予正确的初始值,JVM负责对类进行初始化,主要对类变量进行初始化。在Java中对类变量进行初始值设定有两种方式:

①声明类变量是指定初始值

②使用静态代码块为类变量指定初始值

JVM初始化步骤

1、假如这个类还没有被加载和连接,则程序先加载并连接该类

2、假如该类的直接父类还没有被初始化,则先初始化其直接父类

3、假如类中有初始化语句,则系统依次执行这些初始化语句

类初始化时机:只有当对类的主动使用的时候才会导致类的初始化,类的主动使用包括以下六种:

– 创建类的实例,也就是new的方式

– 访问某个类或接口的静态变量,或者对该静态变量赋值

– 调用类的静态方法

– 反射(如Class.forName(“com.shengsiyuan.Test”))

– 初始化某个类的子类,则其父类也会被初始化

– Java虚拟机启动时被标明为启动类的类(Java Test),直接使用java.exe命令来运行某个主类

结束生命周期

•在如下几种情况下,Java虚拟机将结束生命周期

– 执行了System.exit()方法

– 程序正常执行结束

– 程序在执行过程中遇到了异常或错误而异常终止

– 由于操作系统出现错误而导致Java虚拟机进程终止

3、类加载器

寻找类加载器,先来一个小例子

1
2
3
4
5
6
7
8
9
package com.neo.classloader;
public class ClassLoaderTest {
     public static void main(String[] args) {
        ClassLoader loader = Thread.currentThread().getContextClassLoader();
        System.out.println(loader);
        System.out.println(loader.getParent());
        System.out.println(loader.getParent().getParent());
    }
}

运行后,输出结果:

1
2
3
sun.misc.Launcher$AppClassLoader@64fef26a
sun.misc.Launcher$ExtClassLoader@1ddd40f3
null

从上面的结果可以看出,并没有获取到ExtClassLoader的父Loader,原因是Bootstrap Loader(引导类加载器)是用C语言实现的,找不到一个确定的返回父Loader的方式,于是就返回null。

这几种类加载器的层次关系如下图所示:

注意:这里父类加载器并不是通过继承关系来实现的,而是采用组合实现的。

站在Java虚拟机的角度来讲,只存在两种不同的类加载器:启动类加载器:它使用C++实现(这里仅限于Hotspot,也就是JDK1.5之后默认的虚拟机,有很多其他的虚拟机是用Java语言实现的),是虚拟机自身的一部分;所有其他的类加载器:这些类加载器都由Java语言实现,独立于虚拟机之外,并且全部继承自抽象类java.lang.ClassLoader,这些类加载器需要由启动类加载器加载到内存中之后才能去加载其他的类。

站在Java开发人员的角度来看,类加载器可以大致划分为以下三类:

启动类加载器:Bootstrap ClassLoader,负责加载存放在JDKjrelib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。

扩展类加载器:Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载DKjrelibext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。

应用程序类加载器:Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

应用程序都是由这三种类加载器互相配合进行加载的,如果有必要,我们还可以加入自定义的类加载器。因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:

1)在执行非置信代码之前,自动验证数字签名。

2)动态地创建符合用户特定需要的定制化构建类。

3)从特定的场所取得java class,例如数据库中和网络中。

JVM类加载机制

•全盘负责,当一个类加载器负责加载某个Class时,该Class所依赖的和引用的其他Class也将由该类加载器负责载入,除非显示使用另外一个类加载器来载入

•父类委托,先让父类加载器试图加载该类,只有在父类加载器无法加载该类时才尝试从自己的类路径中加载该类

•缓存机制,缓存机制将会保证所有加载过的Class都会被缓存,当程序中需要使用某个Class时,类加载器先从缓存区寻找该Class,只有缓存区不存在,系统才会读取该类对应的二进制数据,并将其转换成Class对象,存入缓存区。这就是为什么修改了Class后,必须重启JVM,程序的修改才会生效

4、类的加载

类加载有三种方式:

1、命令行启动应用时候由JVM初始化加载

2、通过Class.forName()方法动态加载

3、通过ClassLoader.loadClass()方法动态加载

例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
package com.neo.classloader;
public class loaderTest {
        public static void main(String[] args) throws ClassNotFoundException {
                ClassLoader loader = HelloWorld.class.getClassLoader();
                System.out.println(loader);
                //使用ClassLoader.loadClass()来加载类,不会执行初始化块
                loader.loadClass("Test2");
                //使用Class.forName()来加载类,默认会执行初始化块
//                Class.forName("Test2");
                //使用Class.forName()来加载类,并指定ClassLoader,初始化时不执行静态块
//                Class.forName("Test2", false, loader);
        }
}

demo类

1
2
3
4
5
public class Test2 {
        static {
                System.out.println("静态初始化块执行了!");
        }
}

分别切换加载方式,会有不同的输出结果。

Class.forName()和ClassLoader.loadClass()区别

Class.forName():将类的.class文件加载到jvm中之外,还会对类进行解释,执行类中的static块;

ClassLoader.loadClass():只干一件事情,就是将.class文件加载到jvm中,不会执行static中的内容,只有在newInstance才会去执行static块。

注:

Class.forName(name, initialize, loader)带参函数也可控制是否加载static块。并且只有调用了newInstance()方法采用调用构造函数,创建类的对象 。

5、双亲委派模型

双亲委派模型的工作流程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。

双亲委派机制:

1、当AppClassLoader加载一个class时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader去完成。

2、当ExtClassLoader加载一个class时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader去完成。

3、如果BootStrapClassLoader加载失败(例如在$JAVA_HOME/jre/lib里未查找到该class),会使用ExtClassLoader来尝试加载;

4、若ExtClassLoader也加载失败,则会使用AppClassLoader来加载,如果AppClassLoader也加载失败,则会报出异常ClassNotFoundException。

ClassLoader源码分析:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public Class<?> loadClass(String name)throws ClassNotFoundException {
            return loadClass(name, false);
    }
 
    protected synchronized Class<?> loadClass(String name, boolean resolve)throws ClassNotFoundException {
            // 首先判断该类型是否已经被加载
            Class c = findLoadedClass(name);
            if (c == null) {
                //如果没有被加载,就委托给父类加载或者委派给启动类加载器加载
                try {
                    if (parent != null) {
                         //如果存在父类加载器,就委派给父类加载器加载
                        c = parent.loadClass(name, false);
                    } else {
                    //如果不存在父类加载器,就检查是否是由启动类加载器加载的类,通过调用本地方法native Class findBootstrapClass(String name)
                        c = findBootstrapClass0(name);
                    }
                } catch (ClassNotFoundException e) {
                 // 如果父类加载器和启动类加载器都不能完成加载任务,才调用自身的加载功能
                    c = findClass(name);
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }

双亲委派模型意义

-系统类防止内存中出现多份同样的字节码

-保证Java程序安全稳定运行

6、自定义类加载器

    通常情况下,我们都是直接使用系统类加载器。但是,有的时候,我们也需要自定义类加载器。比如应用是通过网络来传输 Java 类的字节码,为保证安全性,这些字节码经过了加密处理,这时系统类加载器就无法对其进行加载,这样则需要自定义类加载器来实现。自定义类加载器一般都是继承自 ClassLoader 类,从上面对 loadClass 方法来分析来看,我们只需要重写 findClass 方法即可。下面我们通过一个示例来演示自定义类加载器的流程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
package com.neo.classloader;
 
import java.io.*;
 
public class MyClassLoader extends ClassLoader {
 
    private String root;
 
    protected Class<?> findClass(String name) throws ClassNotFoundException {
        byte[] classData = loadClassData(name);
        if (classData == null) {
            throw new ClassNotFoundException();
        } else {
            return defineClass(name, classData, 0, classData.length);
        }
    }
 
    private byte[] loadClassData(String className) {
        String fileName = root + File.separatorChar
                + className.replace('.', File.separatorChar) + ".class";
        try {
            InputStream ins = new FileInputStream(fileName);
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            int bufferSize = 1024;
            byte[] buffer = new byte[bufferSize];
            int length = 0;
            while ((length = ins.read(buffer)) != -1) {
                baos.write(buffer, 0, length);
            }
            return baos.toByteArray();
        } catch (IOException e) {
            e.printStackTrace();
        }
        return null;
    }
 
    public String getRoot() {
        return root;
    }
 
    public void setRoot(String root) {
        this.root = root;
    }
 
    public static void main(String[] args)  {
 
        MyClassLoader classLoader = new MyClassLoader();
        classLoader.setRoot("E:\temp");
 
        Class<?> testClass = null;
        try {
            testClass = classLoader.loadClass("com.neo.classloader.Test2");
            Object object = testClass.newInstance();
            System.out.println(object.getClass().getClassLoader());
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InstantiationException e) {
            e.printStackTrace();
        } catch (IllegalAccessException e) {
            e.printStackTrace();
        }
    }
}

自定义类加载器的核心在于对字节码文件的获取,如果是加密的字节码则需要在该类中对文件进行解密。由于这里只是演示,我并未对class文件进行加密,因此没有解密的过程。这里有几点需要注意:

1、这里传递的文件名需要是类的全限定性名称,即com.paddx.test.classloading.Test格式的,因为 defineClass 方法是按这种格式进行处理的。

2、最好不要重写loadClass方法,因为这样容易破坏双亲委托模式。

3、这类Test 类本身可以被 AppClassLoader 类加载,因此我们不能把 com/paddx/test/classloading/Test.class 放在类路径下。否则,由于双亲委托机制的存在,会直接导致该类由AppClassLoader 加载,而不会通过我们自定义类加载器来加载。

原文地址:https://www.cnblogs.com/mu-tou-man/p/10415572.html