线程池中状态与线程数的设计分析(ThreadPoolExecutor中ctl变量)

预备知识

可以先看下我的另一篇文章对于Java中的位掩码BitMask的解释。

  • 1、一个整数在jvm中占用了4个字节,共32bits
  • 2、最高位的bit代表符号位,0为正数、1为负,剩余的31bits则代表数字部分
  • 3、反码加1即为补码
  • 4、对于负数而言,是以补码的形式存储在内存中的。以-7(int)为例
    • 1)、将-7的绝对值转化为二进制:
      0000 0000 0000 0000 0000 0000 0000 0111
    • 2):将上面的二进制以反码表示:
      1111 1111 1111 1111 1111 1111 1111 1000
    • 3):转化为补码:
      1111 1111 1111 1111 1111 1111 1111 1001

源码分析

我们把ThreadPoolExecutor中的状态和状态相关的方法复制出来,然后创建一个线程池,在运行中的时候分析线程池的状态和线程数,于是有了下面例子:

@Slf4j
public class ThreadPoolExecutorCtlAnalysis {
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY = (1 << COUNT_BITS) - 1;// 000,11111111111111111111111111111

    // runState is stored in the high-order bits
    private static final int RUNNING = -1 << COUNT_BITS;  // 111,00000000000000000000000000000
    private static final int SHUTDOWN = 0 << COUNT_BITS;  // 000,00000000000000000000000000000
    private static final int STOP = 1 << COUNT_BITS;      // 001,00000000000000000000000000000
    private static final int TIDYING = 2 << COUNT_BITS;   // 010,00000000000000000000000000000
    private static final int TERMINATED = 3 << COUNT_BITS;// 011,00000000000000000000000000000

    // Packing and unpacking ctl

    // RUNNING(3'thread) 111,00000000000000000000000000011
    // ~CAPACITY         111,00000000000000000000000000000
    // RESULT            111,00000000000000000000000000000
    // 与操作取高位获取的就是ctl中保存的的线程池的状态
    private static int runStateOf(int c) {
        return c & ~CAPACITY;
    }

    // RUNNING(3'thread) 111,00000000000000000000000000011
    // CAPACITY          000,11111111111111111111111111111
    // RESULT            000,00000000000000000000000000011
    // 与操作取低位获取的就是ctl中保存的worker数量
    private static int workerCountOf(int c) {
        return c & CAPACITY;
    }

    private static Runnable buildRunnableTask() {
        return () -> {
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.info("Task finished.");
        };
    }

    private static int getCtlValue(ThreadPoolExecutor executor, Field field) {
        //noinspection ConstantConditions
        return ((AtomicInteger) ReflectionUtils.getField(field, executor)).get();
    }

    private static String formatBinaryString(int state) {
        StringBuilder binaryString = new StringBuilder(Integer.toBinaryString(state));
        if (binaryString.length() < Integer.SIZE) {
            for (int i = binaryString.length(); i < Integer.SIZE; i++) {
                binaryString.insert(0, "0");
            }
        }
        return binaryString.substring(0, 3) + "," + binaryString.substring(3, Integer.SIZE);
    }

    private static void peekThreadPoolExecuteState(ThreadPoolExecutor executor, Field ctlField) {
        log.info("------------------- ThreadPoolExecuteState -------------------");
        int ctlValue = getCtlValue(executor, ctlField);
        log.info("getCtlValue  : {}", formatBinaryString(ctlValue));
        log.info("workerCountOf: {}", workerCountOf(ctlValue));
        log.info("Is    RUNNING: {}", runStateOf(ctlValue) == RUNNING);
        log.info("Is   SHUTDOWN: {}", runStateOf(ctlValue) == SHUTDOWN);
        log.info("Is       STOP: {}", runStateOf(ctlValue) == STOP);
        log.info("Is    TIDYING: {}", runStateOf(ctlValue) == TIDYING);
        log.info("Is TERMINATED: {}", runStateOf(ctlValue) == TERMINATED);
    }

    public static void main(String[] args) throws NoSuchFieldException, InterruptedException {
        // 打印出来看看几种状态的二进制表示
        log.info("{} --> CAPACITY", formatBinaryString(CAPACITY));
        log.info("{} --> RUNNING", formatBinaryString(RUNNING));
        log.info("{} --> STOP", formatBinaryString(STOP));
        log.info("{} --> TERMINATED", formatBinaryString(TERMINATED));


        // 创建一个线程池,运行3个任务
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                1, 2, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(1));
        executor.submit(buildRunnableTask());
        executor.submit(buildRunnableTask());
        executor.submit(buildRunnableTask());
        // 休眠一秒钟,可以拿到中间状态的ctl
        Thread.sleep(1000);
        log.info("getActiveCount(): {}", executor.getActiveCount());
        // 通过反射能拿到ThreadPoolExecutor的ctl的值
        Field ctlField = ThreadPoolExecutor.class.getDeclaredField("ctl");
        ctlField.setAccessible(true);
        // 线程池运行中的状态可通过ctl拿到
        peekThreadPoolExecuteState(executor, ctlField);
        // 终止线程池,再来看看线程池中ctl的状态
        executor.shutdownNow();
        peekThreadPoolExecuteState(executor, ctlField);
        // 休眠2秒钟,看看线程池最终的状态
        Thread.sleep(2000);
        peekThreadPoolExecuteState(executor, ctlField);
    }
}

在看运行结果之前,我们先看下ThreadPoolExecutor中的几处涉及到状态变更的方法实现。

submit()源码分析

public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    execute(ftask);
    return ftask;
}

最终调用的是内部的execute方法:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
 
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))
        reject(command);
}

这个方法不是特别复杂,我们本文的重点是要看看它的addWorker()方法,这个不复制太多逻辑,关键在两行:

private boolean addWorker(Runnable firstTask, boolean core) {
    int c = ctl.get();
    ...
        compareAndIncrementWorkerCount(c)
    ...
}
private boolean compareAndIncrementWorkerCount(int expect) {
    return ctl.compareAndSet(expect, expect + 1);
}

这里控制的是ctl中工作线程数(wc:WorkerCount)的变更,即整形低29位的自增不会影响到高3位的状态:

RUNNING(0'wc) 111,00000000000000000000000000000
RUNNING(1'wc) 111,00000000000000000000000000001

所以可预见的输出结果就是:

workerCountOf(): 1
Is Running: true
Is Stop: false

注意的是这些值都从ctl属性中得来。

shutdownNow()源码分析

在我们的例子中,我们调用了shutdownNow()方法来改变线程池的状态。

public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        advanceRunState(STOP);
        interruptWorkers();
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

这里我们关注的是advanceRunState(STOP)方法:

/**
 * Transitions runState to given target, or leaves it alone if
 * already at least the given target.
 *
 * @param targetState the desired state, either SHUTDOWN or STOP
 *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
 */
private void advanceRunState(int targetState) {
    for (;;) {
        int c = ctl.get();
        if (runStateAtLeast(c, targetState) ||
            ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
            break;
    }
}

该方法最终是要把当前状态变为STOP状态。

注意点一:

ThreadPoolExecutor中状态定义的值大小是有序的,即:

TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING(最高位1是负数)

注意点二:

advance的含意是推进、前进的意思,Java并发包里的很多方法都使用了该命名,所以当前方法表示的意思是要推进运行状态(advanceRunState),因此方法中才有了runStateAtLeast()判断。
即要推进状态,那如果当前状态已经大于目标状态了,本次方法直接跳过。否则才去做cas操作。这也正是原方法注释想表达的意思。

注意点三:

最后在做cas操作的时候合并当前wc和rs的值,使用的是ctlOf方法:

private static int ctlOf(int rs, int wc) {
    return rs | wc;
}

通过与运算把RunState和WorkerCount的值合并到一处,即最终的ctl的值:

STOP      001,00000000000000000000000000000
WorkCount 000,00000000000000000000000000001
ctl value 001,00000000000000000000000000001

所以可预见的输出结果就是:

workerCountOf(): 1
Is Running: false
Is Stop: true

代码输出

12:56:19.473 [main] ThreadPoolExecutorCtlAnalysis - 000,11111111111111111111111111111 --> CAPACITY
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 111,00000000000000000000000000000 --> RUNNING
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 001,00000000000000000000000000000 --> STOP
12:56:19.476 [main] ThreadPoolExecutorCtlAnalysis - 011,00000000000000000000000000000 --> TERMINATED
12:56:20.520 [main] ThreadPoolExecutorCtlAnalysis - getActiveCount(): 2
12:56:20.520 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 111,00000000000000000000000000010
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 2
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: true
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 001,00000000000000000000000000010
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 2
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: true
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:20.533 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: false
12:56:20.534 [pool-1-thread-1] ThreadPoolExecutorCtlAnalysis - Task finished.
12:56:20.534 [pool-1-thread-2] ThreadPoolExecutorCtlAnalysis - Task finished.
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - ------------------- ThreadPoolExecuteState -------------------
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - getCtlValue  : 011,00000000000000000000000000000
12:56:22.538 [main] ThreadPoolExecutorCtlAnalysis - workerCountOf: 0
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is    RUNNING: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is   SHUTDOWN: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is       STOP: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is    TIDYING: false
12:56:22.539 [main] ThreadPoolExecutorCtlAnalysis - Is TERMINATED: true

可以看到使用ctl一个字段可以获取到两个值,并且这两个值不会有并发不一致的情况,每次都是一次cas更新值。

设计目的与优点

线程池自身的状态和线程数量都维护在一个原子变量ctl中,目的不是为了减少存储空间,而是将线程池状态与线程个数合二为一,这样就可以用一次cas原子操作进行赋值,更容易保证在多线程环境下保证运行状态和线程数量的统一。这真是大师的设计智慧啊!

原文地址:https://www.cnblogs.com/mrcharleshu/p/13234652.html