11.分类与监督学习,朴素贝叶斯分类算法

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

简述什么是监督学习与无监督学习。

 答:
简述分类与聚类的联系与区别:
聚类:在没有训练的条件下把样本划分为若干类。
分类:已知存在哪些类,即对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来。
区别:两者区别就是条件中有没有已知类别。

简述什么是监督学习与无监督学习:

监督学习:从大量的先前知识中来判断是什么类型。

无监督学习:把已有的数据进行分类,然后判断是什么类型。

2.朴素贝叶斯分类算法 实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

  • 高斯分布型
  • 多项式型
  • 伯努利型

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
iris=load_iris()
 
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf = clf.fit(iris.data, iris.target)
y_pred=clf.predict(iris.data)
print("高斯朴素贝叶斯,样本总数: %d 错误样本数 : %d" % (iris.data.shape[0],(iris.target != y_pred).sum()))
scores=cross_val_score(clf,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())
 
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf = clf.fit(iris.data, iris.target)
y_pred=clf.predict(iris.data)
print("多项分布朴素贝叶斯,样本总数: %d 错误样本数 : %d" % (iris.data.shape[0],(iris.target != y_pred).sum()))
scores=cross_val_score(clf,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())
 
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf = clf.fit(iris.data, iris.target)
y_pred=clf.predict(iris.data)
print("伯努利朴素贝叶斯,样本总数: %d 错误样本数 : %d" % (iris.data.shape[0],(iris.target != y_pred).sum()))
scores=cross_val_score(clf,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())

 

原文地址:https://www.cnblogs.com/moxiaomo/p/12884858.html