补充.关于秩的不等式

(1)(r(AB) leq min(r(A), r(B)))

证明:(r(AB) = dim C(AB))(C(AB) subset C(A) Longrightarrow dim C(AB) leq dim C(A) = r(A))。则(r(AB) leq r(A))。同理,(r(B^TA^T) leq r(B^T) Longrightarrow r(AB) leq r(B))

(2)(r(A) = r(A^T))

证明:将(A)经初等行变换为阶梯形矩阵(J),从而(A)的行秩 = (J)的行秩 = (J)的列秩 = (A)的列秩。

(3)设(A, B)(m imes n)的矩阵,(r(A + B) leq r(A) + r(B))

证明:设(A = (alpha_1 ,dots, alpha_n), B = (eta_1, dots, eta_n)),其中(alpha_i, eta_i)均为(m)维列向量,(i = 1, dots, n)。并设(r(A) = s, r(B) = t)。再设(alpha_1 ,dots, alpha_s)(A)的一个极大无关组,(eta_1, dots, eta_t)(B)的一个极大无关组。则

[egin{aligned} r(A + B) &= r(alpha_1 + eta_1, dots, alpha_n + eta_n) \ &leq r(alpha_1 ,dots, alpha_n,eta_1, dots, eta_n) \ &leq r(alpha_1 ,dots, alpha_s,eta_1, dots, eta_t) \ &leq s + t \&= r(A) + r(B) end{aligned} ]

(4)(r(AA^T) = r(A))

证明:由于(r(AA^T) = r(A^TA)),因此证明(r(A^TA) = r(A))即可。我们只需要证明(Ax = 0)(A^TAx = 0)同解。(Ax = 0)显然是(A^TAx = 0)的解;(A^TAx = 0 Rightarrow x^TA^TAx = 0 Rightarrow (Ax)^TAx = 0 Rightarrow Ax = 0)。因此两个方程同解。

(5)(r pmatrix{A & O \ O & B} = r(A) + r(B) leq rpmatrix{A & C \ O & B})

(6)设(A)(s imes n)矩阵,(B)(n imes m)矩阵,则有(r(A) + r(B) - n leq r(AB))

证明:由初等变换可得:

[pmatrix{E_n & B \ A & O} ightarrow pmatrix{E_n & B \ O & -AB} ightarrow pmatrix{E_n & O \ O & -AB} ]

即:(pmatrix{E_n & B \ -A & E_s}pmatrix{E_n & B \ A & O}pmatrix{E_n & -B \ O & E_m} = pmatrix{E_n & O \ O & -AB}),则:(r(A) + r(B) leq rpmatrix{E_n & B \ A & O} = rpmatrix{E_n & O \ O & -AB} = n + r(AB))。移项可得:(r(A) + r(B) - n leq r(AB))

(7)设(A)(n imes n)矩阵,若(A^2 = E),那么有:(r(A + E) + r(A - E) = n)

证明:根据题意有((A + E)(A - E) = O),由不等式(6)得:(r(A + E) + r(A - E) - n leq 0),即:(r(A + E) + r(A - E) leq n)。因为(r(A - B) leq r(A) + r(B)),得:(r(A + E) + r(A - E) geq r([(A + E) - (A - E)]) = r(2E) = n)。原命题得证!

(8)设(A)(n imes n)矩阵,且(A^2 = A),那么有(r(A) + r(A - E) = n)

证明方法同上!

原文地址:https://www.cnblogs.com/miraclepbc/p/14550126.html