第四讲.矩阵的运算

矩阵乘法

注:这里不介绍矩阵的概念、矩阵的加法和数乘

(A imes B = C),其中(C_{ij} = A_{icdot } cdot B_{cdot j})

矩阵乘法的几种理解方式:

  1. (A)乘以(B)的每一列(可以看成(A)的列向量的线性组合),得到(C)的每一列。
  2. (A)的每一行乘以(B)(可以看成(B)的行向量的线性组合),得到(C)的每一行。
  3. (A)的第(i)列乘以(B)的第(i)行,将所有情况求和,得到(C)
  4. 常规方法

例题:证明(A(BC) = (AB)C)

证:设(B = (b_1, dots, b_p))(C = (c_1, dots, c_q)),则

(A(BC) = A(Bc_1, dots, Bc_q) = (A(Bc_1), dots, A(Bc_q)))

((AB)C = ((AB)c_1, dots, (AB)c_q))

故只需证明(A(Bc_k) = (AB)c_k, k = 1, dots, q)

[c_k = egin{pmatrix} c_{1k} \ vdots \ c_{pk} end{pmatrix} ]

则:

[egin{aligned} A(Bc_k) &= A(c_{1k}b_1 + dots + c_{pk}b_p) \ &= c_{1k}Ab_1 + dots + c_{pk}Ab_p \ &= (Ab_1 dots Ab_p)c_k \ &= (AB)c_k end{aligned} ]

分块矩阵

[egin{pmatrix} A_1 & A_2 \ A_3 & A_4 end{pmatrix} egin{pmatrix} B_1 & B_2 \ B_3 & B_4 end{pmatrix} = egin{pmatrix} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \ A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 end{pmatrix} ]

注意大小要对应

矩阵的转置

性质:

  1. ((A^T)^T = A)
  2. ((A + B)^T = A^T + B^T)
  3. 对任意数(k)((kA)^T = kA^T)
  4. ((AB)^T = B^TA^T)

对性质4进行证明:

证1:设(A = (a_{ij})_{m imes n} = (a_1, dots, a_n))(B = (b_{ij})_{n imes p} = (b_1, dots, b_p)),则:

[(AB)^T = (Ab_1, dots, Ab_p)^T = egin{pmatrix} (Ab_1)^T \ vdots \ (Ab_p)^T end{pmatrix}, B^TA^T = egin{pmatrix} b_1^T \ vdots \ b_p^T end{pmatrix}A^T = egin{pmatrix} b_1^TA^T \ vdots \ b_p^TA^T end{pmatrix} ]

故只需证((Ab_j)^T = b_j^TA^T),记(b_j = (b_{1j}, dots, b_{nj})^T)

[egin{aligned} (Ab_j)^T &= (b_{1j}a_1 + dots + b_{nj}a_n)^T \ &= b_{1j}a_1^T + dots + b_{nj}a_n^T \ &= (b_{1j}, dots, b_{nj}) egin{pmatrix} a_1^T \ vdots \ a_n^T end{pmatrix} = b_j^TA^T end{aligned} ]

证2:设(A)(m imes n)矩阵,(B)(n imes p)矩阵。有:

[((AB)^T)_{ij} = (AB)_{ji} = sum_{k = 1}^n a_{jk}b_{ki}, \ (B^TA^T)_{ij} = sum_{k = 1}^n (B^T)_{ik}(A^T)_{kj} = sum_{k = 1}^n b_{ki}a_{jk} ]

((AB)^T = B^TA^T)

定义:若(A^T = A),则称(A)是一个对称矩阵。若(A^T = -A),则称(A)是一个反对称矩阵。

性质:设(R)(m imes n)矩阵,则(R^TR)(m imes m)对称矩阵,(R^TR)(n imes n)对称矩阵,且其对角元均非负。

只证明(R^TR)对角元非负。不妨设(R = (r_{ij})_{m imes n}, R^T = (r'_{ij})_{n imes m}),其中(r_{ij} = r'_{ji})(R^TR = (a_{ij})_{n imes n})。对于对角元,有:

[a_{ii} = sum_{k = 1}^m r'_{ik}r_{ki} = sum_{k = 1}^m r_{ki}^2 geq 0 ]

因此其对角元均非负!

原文地址:https://www.cnblogs.com/miraclepbc/p/14538872.html