scipy.sparse 稀疏矩阵

 from 博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun

本文主要围绕scipy中的稀疏矩阵展开,也会介绍几种scipy之外的稀疏矩阵的存储方式。

dok_matrix

继承自dict,key是(row,col)构成的二元组,value是非0元素。

优点:

  1. 非常高效地添加、删除、查找元素
  2. 转换成coo_matrix很快

缺点:

  1. 继承了dict的缺点,即内存开销大
  2. 不能有重复的(row,col)

适用场景:

  1. 加载数据文件时使用dok_matrix快速构建稀疏矩阵,然后转换成其他形式的稀疏矩阵

coo_matrix

如上图,构造coo_matrix需要3个等长的数组,values数组存放矩阵中的非0元素,row indices存放非0元素的行坐标,column indices存放非0元素的列坐标。

优点:

  1. 容易构造
  2. 可以快速地转换成其他形式的稀疏矩阵
  3. 支持相同的(row,col)坐标上存放多个值

缺点:

  1. 构建完成后不允许再插入或删除元素
  2. 不能直接进行科学计算和切片操作

适用场景:

  1. 加载数据文件时使用coo_matrix快速构建稀疏矩阵,然后调用to_csr()、to_csc()、to_dense()把它转换成CSR或稠密矩阵

csr_matrix

csr_matrix同样由3个数组组成,values存储非0元素,column indices存储非0元素的列坐标,row offsets依次存储每行的首元素在values中的坐标,如果某行全是0则对应的row offsets值为-1(我猜的)。

优点:

  1. 高效地按行切片
  2. 快速地计算矩阵与向量的内积
  3. 高效地进行矩阵的算术运行,CSR + CSR、CSR * CSR等

缺点:

  1. 按列切片很慢(考虑CSC)
  2. 一旦构建完成后,再往里面添加或删除元素成本很高

csc_matrix

跟csr_matrix刚好反过来。

bsr_matrix

跟CSR/CSC很相近,尤其适用于稀疏矩阵中包含稠密子矩阵的情况。在解决矢量值有限元离散(vector-valued finite element discretizations)这类问题中BSR比CSR/CSC更高效。

dia_matrix

对角线存储法,按对角线方式存,列代表对角线,行代表行。省略全零的对角线。(从左下往右上开始:第一个对角线是零忽略,第二个对角线是5,6,第三个对角线是零忽略,第四个对角线是1,2,3,4,第五个对角线是7,8,9,第六第七个对角线忽略)。[3]

这里行对应行,所以5和6是分别在第三行第四行的,前面补上无效元素*。如果对角线中间有0,存的时候也需要补0。

适用场景:

  1. 如果原始矩阵就是一个对角性很好的矩阵那压缩率会非常高,比如下图,但是如果是随机的那效率会非常糟糕。

lil_matrix

内部结构是个二维数组:[[(col,value)]],第一行对应原矩阵的一行(可以快速地定位到行),行内按列编号排序好(通过折半查找可以快速地定位到列),同样只存储非0元素。

优点:

  1. 快速按行切片
  2. 高效地添加、删除、查找元素

缺点:

  1. 按列切片很慢(考虑CSC)
  2. 算术运算LIL+LIL很慢(考虑CSR或CSC)
  3. 矩阵和向量内和解很慢(考虑CSR或CSC)

适用场景:

  1. 加载数据文件时使用lil_matrix快速构建稀疏矩阵,然后调用to_csr()、to_csc()把它转换成CSR/CSC进行后续的矩阵运算
  2. 非0元素非常多时,考虑使用coo_matrix(我个人是这样理解的,lil_matrix用一个二维数组搞定,二维数组占用的是连续的内存空间,如果非0元素非常多就要申请一块非常大的连续的内存空间,这样性能很差。而coo_matrix毕竟是使用的3个一维数组,对连续内存空间的要求没那么高)

 ELLPACK (ELL)

用两个和原始矩阵相同行数的矩阵来存:第一个矩阵存的是列号,第二个矩阵存的是数值,行号就不存了,用自身所在的行来表示;这两个矩阵每一行都是从头开始放,如果没有元素了就用个标志比如*结束。 上图中间矩阵有误,第三行应该是  0 2 3。

注:这样如果某一行很多元素,那么后面两个矩阵就会很胖,其他行结尾*很多,浪费。可以存成数组,比如上面两个矩阵就是:

0 1 * 1 2 * 0 2 3 * 1 3 *

1 7 * 2 8 * 5 3 9 * 6 4 *

但是这样要取一行就比较不方便了。

Hybrid (HYB) ELL + COO

为了解决ELL中提到的,如果某一行特别多,造成其他行的浪费,那么把这些多出来的元素(比如第三行的9,其他每一行最大都是2个元素)用COO单独存储。

skyline matrix storage

没看明白,自行wiki。

适用场景:

  1. 非常适合于稀疏矩阵的Cholesky分解或LU分解,这两种分解都是用来解线性方程组的。

行列双索引

这是自己实现的一种存储方式,分别按行和按列建立dict(dict中的key是行号或列号),这样按下标查找元素很快,但牺牲了空间。为了挽回空间上的牺牲,我们采用二进制来存储dict中的value。按下标查找元素时,根据行号定位到相应的value,value反序列化后转成dict,该dict的key是列号。

上面的代码中做二进制序列化时用到了struck.pack,来个小例子看下序列化能省多少内存。

优点:

  1. 高效地动态添加元素
  2. 高效地按下标查找元素
  3. 高效地按行切片和按列切片

缺点:

  1. 不支持删除元素
  2. 内存占用略大

选择稀疏矩阵存储格式的经验

  1. DIA和ELL格式在进行稀疏矩阵-矢量乘积(sparse matrix-vector products)时效率最高,所以它们是应用迭代法(如共轭梯度法)解稀疏线性系统最快的格式
  2. COO格式常用于从文件中进行稀疏矩阵的读写,如matrix market即采用COO格式,而CSR格式常用于读入数据后进行稀疏矩阵计算
原文地址:https://www.cnblogs.com/mdumpling/p/7771917.html