OpenGL

http://blog.sina.com.cn/s/blog_8c7d49f20102v4qm.html

Patch is just an ordered list of vertices (在tessellation shader里面比较重要的概念就是这个patch,patch是一系列的顶点,OpenGL规定patch的vertex数量必须至少大于等于3)

The tessellation process doesn’t operate on OpenGL’s classic geometric primitives: points, lines, and triangles, but uses a new primitive called a patch (Tessellation shader就是针对patch来进行处理的而并非点,县,三角形)

 

Patch – are processed by all of active shading stage in the pipeline (patch可被所有的shader处理)

Two shading stages of Tessellation shading:

1.      Tessellation Control Shader (optional)

In tessellation control shader, gl_PatchVerticesIn provides the number of elements in gl_in (gl_in 用于在tessellation control shader里面访问传进的来patch里面的顶点)

gl_out 用于控制patch里面的vertex从tessellation control shader输出后的属性

gl_InvocationID is used to access the specific vertex of a patch (gl_InvocationID 用于访问传入patch里的特定顶点)

Layout (vertices = *) out; (用于指定输出的patch里面有多少个顶点)

           gl_TessLevelInner
               Specify how the interior of the domain is subdivided and stored in a two element array named gl_TessLevelInner(指定多边形内部如何细分)
         gl_TessLevelOuter
                Control how the perimeter of the domain is subdivided, and is stored in an implicitly declared four-element array named gl_TessLevelOuter(指定多边形边界上的边被如何细分)
          gl_TessLevelInner & gl_TessLevelOuter 根据多边形内部区域的类型会有不同的分割法
 
Tessellation Evaluation Shader (optional)

The TES is executed on all generated domain locations.Positions each of the vertices in the final mesh (TES是针对从tessellation control shader 里面通过细分生成的顶点来进行运算,通过gl_in和gl_VocationID来访问我们传入的patch的一系列顶点信息,结合gl_TessCoord访问我们生成的新顶点的纹理信息来计算新的坐标位置,从而实现细分多边形的效果)

layout (quads, equal_spacing, ccw) in; (指定新生成的多边形类型等信息)

glPatchParameteri() -- 告诉程序我们定义多少个顶点为一个patch


barrier() – .....

If you have additional per-vertex attribute values, either for input or output, these need to be declared as either in or out arrays in your tessellation control shader (需要传入TCS额外的顶点信息,需要定义额外in & out array)


glPatchParameterfv() -- can be used to set the inner and outer-tessellation levels(可以用于指定inner和outer的数值,当然我们也可以在tessellation control shader里面通过gl_TessLevelInner & gl_TessLevelOuter直接指定)

三中不同类型的domain -- 会决定我们inner和outer的具体含义:

Quad Tessellation:

…..

Isoline  Tessellation:

Use only two of the outer-tessellation levels to determine the amount of subdivision

…..

Triangle Tessellation:

Triangular domains use barycentric coordinates to specify their Tessellation coordinates

…..

最终渲染效果:

- Tessellation Shader" title="OpenGL - Tessellation Shader" height="291" width="452">

- Tessellation Shader" title="OpenGL - Tessellation Shader" height="318" width="448">

- Tessellation Shader" title="OpenGL - Tessellation Shader" height="291" width="455">

- Tessellation Shader" title="OpenGL - Tessellation Shader" height="298" width="444">

Main.cpp Source Code below:
#include

#include

#include

// TODO: 在此处引用程序需要的其他头文件
#include
#include "vgl.h"
#include "mat.h"
#include "LoadShaders.h"
#include "Shapes/Teapot.h"

using namespace std;

GLuint  PM;  // Projection matrix
GLuint  MVM;     // Model view matrix

GLuint  InnerL;  // Inner tessellation paramter
GLuint  OuterL;  // Outer tessellation paramter

GLfloat  Inner = 1.0;
GLfloat  Outer = 1.0;

#define SQUARE_VERTEX_NUMBER 4

//----------------------------------------------------------------------------

void init( void )
{
    //create shader and link program first
    ShaderInfo shaders[] = {
        { GL_VERTEX_SHADER,          "square.vert" },
        { GL_TESS_CONTROL_SHADER,    "square.cont" },
        { GL_TESS_EVALUATION_SHADER, "square.eval" },
        { GL_FRAGMENT_SHADER,        "square.frag" },
        { GL_NONE, NULL }
    };

    //Shader program
    GLuint program;

    //load shaders
    program = LoadShaders(shaders);

    //link shader program and use it
    glUseProgram(program);

    //vertex array
    GLuint VA;
    glGenVertexArrays(1, &VA);
    glBindVertexArray(VA);

    //Vertex buffer
    GLuint VB;
    glGenBuffers(1, &VB);
    glBindBuffer(GL_ARRAY_BUFFER, VB);

    //define square vertex data
    const GLfloat square_vertex_data[SQUARE_VERTEX_NUMBER][2] = {
        { 1.0, 1.0 },
        { -1.0, 1.0},
        { -1.0, -1.0},
        { 1.0, -1.0}
    };

    //vertex buffer data
    glBufferData(GL_ARRAY_BUFFER, sizeof(square_vertex_data), square_vertex_data, GL_STATIC_DRAW);

    //Obtain vertex position in program
    GLint vPostionIndex = glGetAttribLocation(program, "vPosition");

    //Enable vertex attribute
    glEnableVertexAttribArray( vPostionIndex );

    //define an array of generic vertex attribute data for shader (让shader知道怎么去读取我们传入的vertex 信息)
    glVertexAttribPointer(vPostionIndex, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));

    //Obtain uniform variable of program
    PM = glGetUniformLocation(program, "PJ");
    MVM = glGetUniformLocation(program, "MV");

    InnerL = glGetUniformLocation(program, "inner");
    OuterL = glGetUniformLocation(program, "outer");

    //Set some default value for uniform variable
    glUniform1f(InnerL, Inner);
    glUniform1f(OuterL, Outer);

    mat4  modelview = Translate( 0.0, 0.0, -2.0 ) *    RotateX( -50.0 );
   
    glUniformMatrix4fv( MVM, 1, GL_TRUE, modelview );

    //Define how many vertices composed one patch (定义多少个vertices定义一个patch)
    glPatchParameteri(GL_PATCH_VERTICES, 4);

    //Enable some relative setting
    glEnable(GL_DEPTH_TEST);

    glClearColor( 0.0, 0.0, 0.0, 1.0 );
}

//----------------------------------------------------------------------------

void display( void )
{
    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
   
    glUniform1f(InnerL, Inner);

    glUniform1f(OuterL, Outer);

    glDrawArrays(GL_PATCHES, 0, SQUARE_VERTEX_NUMBER);

    glutSwapBuffers();
}

//----------------------------------------------------------------------------

void reshape( int width, int height )
{
    glViewport( 0, 0, width, height );

    GLfloat  aspect = GLfloat(width)/height;

    mat4  projection = Perspective( 60.0, aspect, 1, 3 );
   
    glUniformMatrix4fv( PM, 1, GL_TRUE, projection );

    glutPostRedisplay();
}

//----------------------------------------------------------------------------

void keyboard( unsigned char key, int x, int y )
{
    switch ( key ) {
    case 'q': case 'Q': case 033 :
        exit( EXIT_SUCCESS );
        break;

    case 'i':
        Inner--;
        if ( Inner < 1.0 )  Inner = 1.0;
        glUniform1f( InnerL, Inner );
        break;

    case 'I':
        Inner++;
        if ( Inner > 64 )  Inner = 64.0;
        glUniform1f( InnerL, Inner );
        break;

    case 'o':
        Outer--;
        if ( Outer < 1.0 )  Outer = 1.0;
        glUniform1f( OuterL, Outer );
        break;

    case 'O':
        Outer++;
        if ( Outer > 64 )  Outer = 64.0;
        glUniform1f( OuterL, Outer );
        break;

    case 'r':
        Inner = 1.0;
        Outer = 1.0;
        glUniform1f( InnerL, Inner );
        glUniform1f( OuterL, Outer );
        break;
   
    case 'm': {
        static GLenum mode = GL_FILL;
        mode = ( mode == GL_FILL ? GL_LINE : GL_FILL );
        glPolygonMode( GL_FRONT_AND_BACK, mode );
              } break;
    }

    glutPostRedisplay();
}

//----------------------------------------------------------------------------

int main( int argc, char *argv[] )
{
    glutInit( &argc, argv );
    glutInitDisplayMode( GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE );
    glutInitWindowSize( 512, 512 );
    glutInitContextVersion( 3, 2 );
    glutInitContextProfile( GLUT_CORE_PROFILE );
    glutCreateWindow( "teapot" );

     glewExperimental = GL_TRUE;    //注意这里有个坑 -- 这一句很关键,不加这一句gl_GenVertexArray()会报错,好像说是GLEW对openGL的core context有一些问题

      //   http://stackoverflow.com/questions/22813625/0xc0000005-access-violation-executing-location-0x00000000-opengl


    GLenum error = glewInit();

    if( error != GLEW_OK )
    {
        cout<<"glewInit failed, aborting"<<endl;
    }

    if ( GLEW_ARB_vertex_array_object == NULL )
    {
        cout<<"GLEW_ARB_vertex_array_object = NULL"<<endl;
    }

    cout<<"Error info:"<<glGetError()<<endl;

    init();

    glutDisplayFunc( display );
    glutReshapeFunc( reshape );
    glutKeyboardFunc( keyboard );

    glutMainLoop();
    return 0;
}

square.vert source code below:

#version 400 core

in  vec4  vPosition;

void main()
{
    //gl_Position is used to access the vertex position that is input from application
    gl_Position = vPosition;
}

square.cont source code below:

#version 400 core

//The main purpose of tessellation control shader is:
//Generate the tessellation output patch vertices that are passed to the tessellation
//evaluation shader, as well as update any per-vertex

//Define how many vertices will be used as one patch
layout (vertices = 4) out;

//uniform type is used to define the variable that can be used to communicate between shader and application
uniform float inner;

uniform float outer;

void main()
{
    //gl_TessLevelInner is used to define:
    //how the interior of the domain is subdivided and stored in a two element array named    
    gl_TessLevelInner[0] = inner;
    gl_TessLevelInner[1] = inner;
   
    //gl_TessLevelOuter is used to define:
    //how the perimeter of the domain is subdivided, and is stored in an
    //implicitly declared four-element array
    gl_TessLevelOuter[0] = outer;
    gl_TessLevelOuter[1] = outer;
    gl_TessLevelOuter[2] = outer;
    gl_TessLevelOuter[3] = outer;
   
    //gl_in is used to access the number of elements that are define by glPatchParameteri()
    //glPatchParameteri() define how many vertices as a patch
    //gl_out is used to access the output vertex position of tessellation control shader
    //gl_in vertex shader structure below:
    //in gl_PerVertex {
    //        vec4 gl_Position;
    //        float gl_PointSize;
    //        float gl_ClipDistance[]
    //} gl_in[gl_PatchVerticesIn];   
    //gl_out vertex shader structure is similar to gl_in structure
    //gl_InvocationID is used to access the specific vertex of a patch
    gl_out[gl_InvocationID].gl_Position =  gl_in[gl_InvocationID].gl_Position;
}

square.eval source code below:

#version 400 core

//The main purpose of tessellation evaluation shader is:
//configure the primitive generator, which is done using a layout directive
//Specifying the face winding for generated primitives
//(the order the vertices are issued determines the facedness of the primitive)
layout (quads, equal_spacing, ccw) in;

//The TES is executed on all generated domain locations.
//The bound tessellation evaluation shader is
//executed one for each tessellation coordinate that the primitive generator
//Tessellation Shaders emits, and is responsible for determining the position
//of the vertex derived from the tessellation coordinate.

uniform mat4 PJ;

uniform mat4 MV;

#define M_PI        3.14159265358979323846

//----------------------------------------------------------------------------

float Hanning( vec2 p )
{
    p -= 0.5; // map unit square to [-.5, .5]

    float r = length( p );

    r = cos( M_PI * r / 2.0 );
    r *= r;

    return r;
}

void main()
{
    //gl_TessCoord is used to access the Tessellation coordinates that are
    //generated by tessellation control shader
    float u = gl_TessCoord.x;
    float v = gl_TessCoord.y;
   
    //use Tessellation coordinates to calculate position for new vertex that
    //is generated by tessellation control shader
    #define p(i)  gl_in[i].gl_Position

    vec4 pos = v*(u*p(0) + (1-u)*p(1)) + (1-v)*(u*p(3) + (1-u)*p(2));
    pos.z = Hanning( gl_TessCoord.xy );
   
    gl_Position = PJ * MV * pos;
}

square.frag source code below:

#version 400 core

out  vec4 fColor;

void main()
{
    fColor = (1 - gl_FragCoord.z) * vec4( 1.0, 0.0, 0.0, 1.0 );
}

总结:

tessellation shader是可选的shader,不是必须的

tessellation shader与vertex shader不一样,tessellation shader是针对patch(一系列顶点)来处理而不是一个顶点 (因为tessellation shader需要通过传入的patch(一系列顶点)来计算新顶点的位置信息)

tessellation control shader负责对patch的细分设定

tessellation evaluation shader负责对TCS细分出来的顶点进行位置等信息运算从而实现LOD(level of detail -- 根据与camera的距离不同而细分程度不同)等效果

Bezier曲线在这里是一种细分后位置的计算方法来实现曲面的平滑效果

tessellation shader有个重要的应用就是LOD(Level of Detail),通过在判断物体与视线的距离来设定tessellation control里面的factor level从而实现近细分多,远细分少的效果

还有一个应用叫displacement mapping,在tessellation evaluation shader里面通过tessellation coordinate的值来映射纹理(sample a texture)

原文地址:https://www.cnblogs.com/mazhenyu/p/5010296.html