sigslot信号槽的库使用

  1. 在windows下可能编译出问题,则尝试使用windows下的sigslot.h,我也忘记是哪里拷过来的了,总之谢谢开源大佬

    window下的

windows下的sigslot.h 展开看看

// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
// the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
// (see also the full documentation at http://sigslot.sourceforge.net/)
//
// #define switches
// SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
// all of the thread safety support on platforms where it is
// available.
//
// SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
// gcc on a platform that supports Posix threads. (When using gcc,
// this is the default - use SIGSLOT_PURE_ISO to disable this if
// necessary)
//
// SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
// Otherwise, the default is single_threaded. #define this yourself to
// override the default. In pure ISO mode, anything other than
// single_threaded will cause a compiler error.
//
// PLATFORM NOTES
//
// Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream
// compilers do this by default, but you may need to define it
// yourself if your build environment is less standard. This causes
// the Win32 thread support to be compiled in and used automatically.
//
// Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
// available, so they are used automatically. You can override this
// (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
// something other than gcc but still want to use Posix threads, you
// need to #define SIGSLOT_USE_POSIX_THREADS.
//
// ISO C++ - If none of the supported platforms are detected, or if
// SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
// along with any code that might cause a pure ISO C++ environment to
// complain. Before you ask, gcc -ansi -pedantic won't compile this
// library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
// errors that aren't really there. If you feel like investigating this,
// please contact the author.
//
//
// THREADING MODES
//
// single_threaded - Your program is assumed to be single threaded from the point of view
// of signal/slot usage (i.e. all objects using signals and slots are
// created and destroyed from a single thread). Behaviour if objects are
// destroyed concurrently is undefined (i.e. you'll get the occasional
// segmentation fault/memory exception).
//
// multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
// slots can be safely created and destroyed from any thread, even when
// connections exist. In multi_threaded_global mode, this is achieved by a
// single global mutex (actually a critical section on Windows because they
// are faster). This option uses less OS resources, but results in more
// opportunities for contention, possibly resulting in more context switches
// than are strictly necessary.
//
// multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
// except that each signal, and each object that inherits has_slots, all
// have their own mutex/critical section. In practice, this means that
// mutex collisions (and hence context switches) only happen if they are
// absolutely essential. However, on some platforms, creating a lot of
// mutexes can slow down the whole OS, so use this option with care.
//
// USING THE LIBRARY
//
// See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.

ifndef SIGSLOT_H_

define SIGSLOT_H_

include

include

include <stdlib.h>

// On our copy of sigslot.h, we set single threading as default.

define SIGSLOT_DEFAULT_MT_POLICY single_threaded

if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(GNUG) && !defined(SIGSLOT_USE_POSIX_THREADS))

define _SIGSLOT_SINGLE_THREADED

elif defined(WIN32)

define _SIGSLOT_HAS_WIN32_THREADS

if !defined(WIN32_LEAN_AND_MEAN)

define WIN32_LEAN_AND_MEAN

endif

include <windows.h>

elif defined(GNUG) || defined(SIGSLOT_USE_POSIX_THREADS)

define _SIGSLOT_HAS_POSIX_THREADS

include <pthread.h>

else

define _SIGSLOT_SINGLE_THREADED

endif

ifndef SIGSLOT_DEFAULT_MT_POLICY

ifdef _SIGSLOT_SINGLE_THREADED

define SIGSLOT_DEFAULT_MT_POLICY single_threaded

else

define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local

endif

endif

// TODO: change this namespace to talk_base?
namespace sigslot {

class single_threaded
{
public:
	single_threaded()
	{
		;
	}

	virtual ~single_threaded()
	{
		;
	}

	virtual void lock()
	{
		;
	}

	virtual void unlock()
	{
		;
	}
};

ifdef _SIGSLOT_HAS_WIN32_THREADS

// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
	multi_threaded_global()
	{
		static bool isinitialised = false;

		if (!isinitialised)
		{
			InitializeCriticalSection(get_critsec());
			isinitialised = true;
		}
	}

	multi_threaded_global(const multi_threaded_global&)
	{
		;
	}

	virtual ~multi_threaded_global()
	{
		;
	}

	virtual void lock()
	{
		EnterCriticalSection(get_critsec());
	}

	virtual void unlock()
	{
		LeaveCriticalSection(get_critsec());
	}

private:
	CRITICAL_SECTION* get_critsec()
	{
		static CRITICAL_SECTION g_critsec;
		return &g_critsec;
	}
};

class multi_threaded_local
{
public:
	multi_threaded_local()
	{
		InitializeCriticalSection(&m_critsec);
	}

	multi_threaded_local(const multi_threaded_local&)
	{
		InitializeCriticalSection(&m_critsec);
	}

	virtual ~multi_threaded_local()
	{
		DeleteCriticalSection(&m_critsec);
	}

	virtual void lock()
	{
		EnterCriticalSection(&m_critsec);
	}

	virtual void unlock()
	{
		LeaveCriticalSection(&m_critsec);
	}

private:
	CRITICAL_SECTION m_critsec;
};

endif // _SIGSLOT_HAS_WIN32_THREADS

ifdef _SIGSLOT_HAS_POSIX_THREADS

// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
	multi_threaded_global()
	{
		pthread_mutex_init(get_mutex(), NULL);
	}

	multi_threaded_global(const multi_threaded_global&)
	{
		;
	}

	virtual ~multi_threaded_global()
	{
		;
	}

	virtual void lock()
	{
		pthread_mutex_lock(get_mutex());
	}

	virtual void unlock()
	{
		pthread_mutex_unlock(get_mutex());
	}

private:
	pthread_mutex_t* get_mutex()
	{
		static pthread_mutex_t g_mutex;
		return &g_mutex;
	}
};

class multi_threaded_local
{
public:
	multi_threaded_local()
	{
		pthread_mutex_init(&m_mutex, NULL);
	}

	multi_threaded_local(const multi_threaded_local&)
	{
		pthread_mutex_init(&m_mutex, NULL);
	}

	virtual ~multi_threaded_local()
	{
		pthread_mutex_destroy(&m_mutex);
	}

	virtual void lock()
	{
		pthread_mutex_lock(&m_mutex);
	}

	virtual void unlock()
	{
		pthread_mutex_unlock(&m_mutex);
	}

private:
	pthread_mutex_t m_mutex;
};

endif // _SIGSLOT_HAS_POSIX_THREADS

template<class mt_policy>
class lock_block
{
public:
	mt_policy *m_mutex;

	lock_block(mt_policy *mtx)
		: m_mutex(mtx)
	{
		m_mutex->lock();
	}

	~lock_block()
	{
		m_mutex->unlock();
	}
};

class has_slots_interface;

template<class mt_policy>
class _connection_base0
{
public:
	virtual ~_connection_base0() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit() = 0;
	virtual _connection_base0* clone() = 0;
	virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class mt_policy>
class _connection_base1
{
public:
	virtual ~_connection_base1() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type) = 0;
	virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
	virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class mt_policy>
class _connection_base2
{
public:
	virtual ~_connection_base2() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type) = 0;
	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _connection_base3
{
public:
	virtual ~_connection_base3() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
class _connection_base4
{
public:
	virtual ~_connection_base4() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _connection_base5
{
public:
	virtual ~_connection_base5() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type) = 0;
	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>* clone() = 0;
	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _connection_base6
{
public:
	virtual ~_connection_base6() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
		arg6_type) = 0;
	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>* clone() = 0;
	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection_base7
{
public:
	virtual ~_connection_base7() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
		arg6_type, arg7_type) = 0;
	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _connection_base8
{
public:
	virtual ~_connection_base8() {}
	virtual has_slots_interface* getdest() const = 0;
	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
		arg6_type, arg7_type, arg8_type) = 0;
	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
};

class _signal_base_interface
{
public:
	virtual void slot_disconnect(has_slots_interface* pslot) = 0;
	virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
};

template<class mt_policy>
class _signal_base : public _signal_base_interface, public mt_policy
{
};

class has_slots_interface
{
public:
	has_slots_interface()
	{
		;
	}

	virtual void signal_connect(_signal_base_interface* sender) = 0;

	virtual void signal_disconnect(_signal_base_interface* sender) = 0;

	virtual ~has_slots_interface()
	{
	}

	virtual void disconnect_all() = 0;
};

template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class has_slots : public has_slots_interface, public mt_policy
{
private:
	typedef std::set<_signal_base_interface*> sender_set;
	typedef sender_set::const_iterator const_iterator;

public:
	has_slots()
	{
		;
	}

	has_slots(const has_slots& hs)
	{
		lock_block<mt_policy> lock(this);
		const_iterator it = hs.m_senders.begin();
		const_iterator itEnd = hs.m_senders.end();

		while (it != itEnd)
		{
			(*it)->slot_duplicate(&hs, this);
			m_senders.insert(*it);
			++it;
		}
	}

	void signal_connect(_signal_base_interface* sender)
	{
		lock_block<mt_policy> lock(this);
		m_senders.insert(sender);
	}

	void signal_disconnect(_signal_base_interface* sender)
	{
		lock_block<mt_policy> lock(this);
		m_senders.erase(sender);
	}

	virtual ~has_slots()
	{
		disconnect_all();
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		const_iterator it = m_senders.begin();
		const_iterator itEnd = m_senders.end();

		while (it != itEnd)
		{
			(*it)->slot_disconnect(this);
			++it;
		}

		m_senders.erase(m_senders.begin(), m_senders.end());
	}

private:
	sender_set m_senders;
};

template<class mt_policy>
class _signal_base0 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base0<mt_policy> *>  connections_list;

	_signal_base0()
	{
		;
	}

	_signal_base0(const _signal_base0& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	~_signal_base0()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class mt_policy>
class _signal_base1 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;

	_signal_base1()
	{
		;
	}

	_signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base1()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}


protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class mt_policy>
class _signal_base2 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
		connections_list;

	_signal_base2()
	{
		;
	}

	_signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base2()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _signal_base3 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
		connections_list;

	_signal_base3()
	{
		;
	}

	_signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base3()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
class _signal_base4 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
		arg4_type, mt_policy> *>  connections_list;

	_signal_base4()
	{
		;
	}

	_signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base4()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _signal_base5 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, mt_policy> *>  connections_list;

	_signal_base5()
	{
		;
	}

	_signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base5()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _signal_base6 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;

	_signal_base6()
	{
		;
	}

	_signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base6()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _signal_base7 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;

	_signal_base7()
	{
		;
	}

	_signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base7()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _signal_base8 : public _signal_base<mt_policy>
{
public:
	typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
		connections_list;

	_signal_base8()
	{
		;
	}

	_signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
		: _signal_base<mt_policy>(s)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = s.m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_connect(this);
			m_connected_slots.push_back((*it)->clone());

			++it;
		}
	}

	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == oldtarget)
			{
				m_connected_slots.push_back((*it)->duplicate(newtarget));
			}

			++it;
		}
	}

	~_signal_base8()
	{
		disconnect_all();
	}

	bool is_empty()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		return it == itEnd;
	}

	void disconnect_all()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			(*it)->getdest()->signal_disconnect(this);
			delete *it;

			++it;
		}

		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
	}

ifdef _DEBUG

	bool connected(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();
		while (it != itEnd)
		{
			itNext = it;
			++itNext;
			if ((*it)->getdest() == pclass)
				return true;
			it = itNext;
		}
		return false;
	}

endif

	void disconnect(has_slots_interface* pclass)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			if ((*it)->getdest() == pclass)
			{
				delete *it;
				m_connected_slots.erase(it);
				pclass->signal_disconnect(this);
				return;
			}

			++it;
		}
	}

	void slot_disconnect(has_slots_interface* pslot)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::iterator it = m_connected_slots.begin();
		typename connections_list::iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			typename connections_list::iterator itNext = it;
			++itNext;

			if ((*it)->getdest() == pslot)
			{
				delete *it;
				m_connected_slots.erase(it);
			}

			it = itNext;
		}
	}

protected:
	connections_list m_connected_slots;
};


template<class dest_type, class mt_policy>
class _connection0 : public _connection_base0<mt_policy>
{
public:
	_connection0()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection0(dest_type* pobject, void (dest_type::*pmemfun)())
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection0()
	{
	}

	virtual _connection_base0<mt_policy>* clone()
	{
		return new _connection0<dest_type, mt_policy>(*this);
	}

	virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit()
	{
		(m_pobject->*m_pmemfun)();
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)();
};

template<class dest_type, class arg1_type, class mt_policy>
class _connection1 : public _connection_base1<arg1_type, mt_policy>
{
public:
	_connection1()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection1()
	{
	}

	virtual _connection_base1<arg1_type, mt_policy>* clone()
	{
		return new _connection1<dest_type, arg1_type, mt_policy>(*this);
	}

	virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1)
	{
		(m_pobject->*m_pmemfun)(a1);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type);
};

template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
{
public:
	_connection2()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection2()
	{
	}

	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
	{
		return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
	}

	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2)
	{
		(m_pobject->*m_pmemfun)(a1, a2);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
{
public:
	_connection3()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection3()
	{
	}

	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
	{
		return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
	}

	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class mt_policy>
	class _connection4 : public _connection_base4<arg1_type, arg2_type,
	arg3_type, arg4_type, mt_policy>
{
public:
	_connection4()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection4()
	{
	}

	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
	{
		return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
	}

	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
		arg4_type a4)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
		arg4_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class mt_policy>
	class _connection5 : public _connection_base5<arg1_type, arg2_type,
	arg3_type, arg4_type, arg5_type, mt_policy>
{
public:
	_connection5()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection5()
	{
	}

	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>* clone()
	{
		return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>(*this);
	}

	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class mt_policy>
	class _connection6 : public _connection_base6<arg1_type, arg2_type,
	arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
{
public:
	_connection6()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection6()
	{
	}

	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>* clone()
	{
		return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>(*this);
	}

	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection7 : public _connection_base7<arg1_type, arg2_type,
	arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
{
public:
	_connection7()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection7()
	{
	}

	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>* clone()
	{
		return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>(*this);
	}

	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type);
};

template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type,
	class arg8_type, class mt_policy>
	class _connection8 : public _connection_base8<arg1_type, arg2_type,
	arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
{
public:
	_connection8()
	{
		m_pobject = NULL;
		m_pmemfun = NULL;
	}

	_connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
		arg7_type, arg8_type))
	{
		m_pobject = pobject;
		m_pmemfun = pmemfun;
	}

	virtual ~_connection8()
	{
	}

	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
	{
		return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
	}

	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
	{
		return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
	}

	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
	{
		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
	}

	virtual has_slots_interface* getdest() const
	{
		return m_pobject;
	}

private:
	dest_type* m_pobject;
	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type);
};

template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal0 : public _signal_base0<mt_policy>
{
public:
	typedef _signal_base0<mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal0()
	{
		;
	}

	signal0(const signal0<mt_policy>& s)
		: _signal_base0<mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)())
	{
		lock_block<mt_policy> lock(this);
		_connection0<desttype, mt_policy>* conn =
			new _connection0<desttype, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit();

			it = itNext;
		}
	}

	void operator()()
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit();

			it = itNext;
		}
	}
};

template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal1 : public _signal_base1<arg1_type, mt_policy>
{
public:
	typedef _signal_base1<arg1_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal1()
	{
		;
	}

	signal1(const signal1<arg1_type, mt_policy>& s)
		: _signal_base1<arg1_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
	{
		lock_block<mt_policy> lock(this);
		_connection1<desttype, arg1_type, mt_policy>* conn =
			new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1);

			it = itNext;
		}
	}

	void operator()(arg1_type a1)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
{
public:
	typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal2()
	{
		;
	}

	signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
		: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type))
	{
		lock_block<mt_policy> lock(this);
		_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
			_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
{
public:
	typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal3()
	{
		;
	}

	signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
		: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type))
	{
		lock_block<mt_policy> lock(this);
		_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
			new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
				pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
	arg4_type, mt_policy>
{
public:
	typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal4()
	{
		;
	}

	signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
		: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type))
	{
		lock_block<mt_policy> lock(this);
		_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
			conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
			arg4_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
	arg4_type, arg5_type, mt_policy>
{
public:
	typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal5()
	{
		;
	}

	signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>& s)
		: _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type))
	{
		lock_block<mt_policy> lock(this);
		_connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
			arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5);

			it = itNext;
		}
	}
};


template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
	arg4_type, arg5_type, arg6_type, mt_policy>
{
public:
	typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal6()
	{
		;
	}

	signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>& s)
		: _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
	{
		lock_block<mt_policy> lock(this);
		_connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* conn =
			new _connection6<desttype, arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
	arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
{
public:
	typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal7()
	{
		;
	}

	signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>& s)
		: _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
		arg7_type))
	{
		lock_block<mt_policy> lock(this);
		_connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* conn =
			new _connection7<desttype, arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

			it = itNext;
		}
	}
};

template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
	arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
{
public:
	typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
	typedef typename base::connections_list connections_list;
	using base::m_connected_slots;

	signal8()
	{
		;
	}

	signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
		: _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
	{
		;
	}

	template<class desttype>
	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
		arg7_type, arg8_type))
	{
		lock_block<mt_policy> lock(this);
		_connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
			new _connection8<desttype, arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type,
			arg8_type, mt_policy>(pclass, pmemfun);
		m_connected_slots.push_back(conn);
		pclass->signal_connect(this);
	}

	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

			it = itNext;
		}
	}

	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
	{
		lock_block<mt_policy> lock(this);
		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
		typename connections_list::const_iterator itEnd = m_connected_slots.end();

		while (it != itEnd)
		{
			itNext = it;
			++itNext;

			(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

			it = itNext;
		}
	}
};

}; // namespace sigslot

endif // _SIGSLOT_H__s

  1. 使用方法
    1. 只有一个sigslot.h文件,导入即可使用
    2. 带槽函数的类继承自sigslot::has_slots<>
    3. 信号类使用成员变量sigslot::signalXXX<XXX1, XXX2, XXX3...> sig;
      • sigslot::signal2<string, int> sig;
      • sigslot::signal3<string, int, int> sig;
      • 最多到sigslot::signal8<string, int, int, int, int, int, int, int> sig;好像
    4. 触发信号的两种方式
      1. b.sig("make love ", 100);
      2. b.sig.emit("eat apple ", 100);
    5. 代码
      #include "sigslot/sigslot.h"
      class A : public sigslot::has_slots<> {
      public:
          A() { }
          ~A() { }
          virtual void doA(string str) {
              cout << "A say " << str << endl;
          }
          virtual void doA2(string str, int x) {
              cout << "A say " << str << "  " << x << "  times" << endl;
          }
      };
      class B {
      public:
          B() { }
          ~B() { }
          sigslot::signal2<string, int> sig;
      };
      signed main() {
          A a;
          B b;
          // 两种触发信号的方式
          b.sig.connect(&a, &A::doA2);
          b.sig("make love ", 100);
          b.sig.emit("eat apple ", 100);
          return 0;
      }
      
原文地址:https://www.cnblogs.com/majiao61/p/15027415.html