6565556565655666

证明:由于$f''left( x ight)$有界,则存在$M>0$,使得对任意的$x in left( {0, + infty } ight)$,有$left| {f''left( x ight)} ight| le M$

由$fleft( x ight) > 0,f'left( x ight) le 0$及单调有界原理知,极限$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight)$存在,不妨设为$a$,则$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight) = a$

对任意$h>0$,由$f{Taylor公式}$知,存在$xi  in left( {x,x + h} ight)$,使得[fleft( {x + h} ight) = fleft( x ight) + f'left( x ight)h + frac{1}{2}f''left( xi   ight){h^2}]

则$f'left( x ight) = frac{{fleft( {x + h} ight) - fleft( x ight)}}{h} - frac{h}{2}f''left( xi   ight)$,从而可知[left| {f'left( x ight)} ight| le frac{1}{h}left( {left| {fleft( {x + h} ight) - a} ight| + left| {a - fleft( x ight)} ight|} ight) + frac{h}{2}M]

而对任给$varepsilon  > 0$,可取$h=hleft( varepsilon ,M ight)>0$,使得$$frac{h}{2}M < frac{varepsilon }{2}$$

且由$lim limits_{x o egin{array}{*{20}{c}}{ + infty }end{array}} fleft( x ight) = a$知,对任给$varepsilon  > 0$,存在$G>0$,使得当$x>G$时,有[frac{1}{h}left( {left| {fleft( {x + h} ight) - a} ight| + left| {a - fleft( x ight)} ight|} ight) < frac{varepsilon }{2}]

所以对任给$varepsilon  > 0$,存在$G>0$,使得当$x>G$时,有$left| {f'left( x ight)} ight| < frac{varepsilon }{2} + frac{varepsilon }{2} = varepsilon $

从而由极限的定义即证







原文地址:https://www.cnblogs.com/ly758241/p/3717642.html