598

$f命题:$$(f{Bellman -Gronwall不等式})$设常数$k > 0$,函数$f,g$
在$left[ {a,b} ight]$上非负连续,且对任意$x in left[ {a,b} ight]$满足[fleft( x ight) ge k + int_a^x {gleft( t ight)fleft( t ight)dt} ]
证明:对任意$x in left[ {a,b} ight]$,有$fleft( x ight) ge k{e^{int_a^x {gleft( t ight)dt} }}$

证明:设[hleft( x ight) = k + int_a^x {gleft( t ight)fleft( t ight)dt} ]则[fleft( x ight) ge hleft( x ight) > 0,h'left( x ight) = gleft( x ight)fleft( x ight)]
所以[frac{{h'left( x ight)}}{{hleft( x ight)}} ge frac{{h'left( x ight)}}{{fleft( x ight)}} = gleft( x ight)]从而对上式两边积分即得

原文地址:https://www.cnblogs.com/ly758241/p/3711876.html