关于不等式的专题讨论II(构造似序不等式并积分的思想,重积分的思想,构造变上限积分思想与单调性的应用)

$f命题:$ $(f{似序不等式})$设$fleft( x ight),gleft( x ight)$均在$left[ {a,b} ight]$上连续且函数的单调性相同,则

[left( {b - a} ight)int_a^b {fleft( x ight)gleft( x ight)dx}  ge int_a^b {fleft( x ight)dx} int_a^b {gleft( x ight)dx} ]

1

$f命题:$$(f{Tschebyscheff不等式})$设$pleft( x ight)$在$left[ {a,b} ight]$非负连续,$fleft( x ight),gleft( x ight)$在$left[ {a,b} ight]$上连续且单调递增,则

[left( {int_a^b {pleft( x ight)fleft( x ight)dx} } ight)left( {int_a^b {pleft( x ight)gleft( x ight)dx} } ight) le left( {int_a^b {pleft( x ight)dx} } ight)left( {int_a^b {pleft( x ight)fleft( x ight)gleft( x ight)dx} } ight)]

1

$f命题:$$(f{Kantorovich不等式})$设正值函数$fleft( x ight)$在$left[ {0,1} ight]$上连续,$m = mathop {min}limits_{x in left[ {0,1} ight]} fleft( x ight),M = mathop {max}limits_{x in left[ {0,1} ight]} fleft( x ight)$,则

[int_0^1 {fleft( x ight)dx} int_0^1 {frac{1}{{fleft( x ight)}}dx}  le frac{{{{left( {m + M} ight)}^2}}}{{4mM}}]

1

$f命题:$设$f:[-1,1] o { ext{R}}$为偶函数,$f$在$[0,1]$上单调递增,又设$g$是$[-1,1]$上的凸函数,即对任意的$x,yin [-1,1]$及$tin (0,1)$有$gleft( {tx + left( {1 - t} ight)y} ight) leqslant tgleft( x ight) + left( {1 - t} ight)gleft( y ight)$,则[2int_{ - 1}^1 {fleft( x ight)gleft( x ight)dx}  geqslant int_{ - 1}^1 {fleft( x ight)dx} int_{ - 1}^1 {gleft( x ight)dx} ]

1

$f命题:$设$fleft( x ight)$在$left[ {a,b} ight]$连续且单调递增,则

[int_a^b {xfleft( x ight)dx}  ge frac{{a + b}}{2}int_a^b {fleft( x ight)dx} ]

1   2   3   4

$f命题:$设函数$fleft( x ight)$在$left[ {0,1} ight]$上连续,且$0 le fleft( x ight) < 1$,则[int_0^1 {frac{{fleft( x ight)}}{{1 - fleft( x ight)}}dx ge frac{{int_0^1 {fleft( x ight)dx} }}{{1 - int_0^1 {fleft( x ight)dx} }}} ]

1   2

$f命题:$设$a,b > 0,fleft( x ight) geqslant 0,fleft( x ight) in Rleft[ {a,b} ight],int_a^b {xfleft( x ight)dx}  = 0$,则[int_a^b {{x^2}fleft( x ight)dx}  leqslant abint_a^b {fleft( x ight)dx} ]

1

$f命题:$设$fin (0,1)$,且无穷积分$int_0^{ + infty } {fleft( x ight)dx} ,int_0^{ + infty } {xfleft( x ight)dx} $均收敛,证明:[int_0^{ + infty } {xfleft( x ight)dx}  > frac{1}{2}{left( {int_0^{ + infty } {fleft( x ight)dx} } ight)^2}]

$f命题:$设$f(x)$为$[0,+infty)$上非负可导函数,且$fleft( 0 ight) = 0,f'left( x ight) leqslant frac{1}{2}$,若$int_0^{ + infty } {fleft( x ight)dx} $收敛,证明:对$forall alpha  > 1$,有$int_0^{ + infty } {{f^alpha }left( x ight)dx} $收敛,且[int_0^{ + infty } {{f^alpha }left( x ight)dx}  leqslant {left( {int_0^{ + infty } {fleft( x ight)dx} } ight)^eta },eta  = frac{{alpha  + 1}}{2}]

1

$f命题:$$(f{Bellman -Gronwall不等式})$设常数$k > 0$,函数$f,g$在$left[ {a,b} ight]$上非负连续,且对任意$x in left[ {a,b} ight]$满足

[fleft( x ight) ge k + int_a^x {gleft( t ight)fleft( t ight)dt} ]
证明:对任意$x in left[ {a,b} ight]$,有$fleft( x ight) ge k{e^{int_a^x {gleft( t ight)dt} }}$

1

$f命题:$

原文地址:https://www.cnblogs.com/ly142857/p/3711770.html