关于矩阵的分解的专题讨论

$f命题:$$f(正定阵的分解)$设$A$为$n$阶实对称正定阵,则存在唯一的正定阵$S$,使得$A = {S^m}left( {m in {N_ + }} ight)$

1

$f命题:$$f(正定阵分解的特例)$设$A$为$n$阶实对称正定阵,则存在正定阵$S$,使得$A = {S^2} = S'S$

$f命题:$$f(矩阵的极分解)$任意实可逆阵$A$均可分解为正定阵$B$与正交阵$C$之积,且分解式唯一

1   2

$f命题:$$f(Fitting分解)$设$A in {M_n}left( F ight)$,则存在可逆阵$P$,使得${P^{ - 1}}AP = left( {egin{array}{*{20}{c}}D&0\0&Nend{array}} ight)$,其中$D$为可逆阵,$N$为幂零阵

1   2   3

$f命题:$$f(矩阵的QR分解)$设$A$为实可逆阵,则存在正交阵$Q$与实可逆上三角阵$R$,使得$A = QR$,且分解式唯一

1

$f命题:$$f(矩阵的奇异值分解)$设$A in {M_{m imes n}}left( R ight)$,则存在正交阵$U,V$,使得[UAV = diagleft( {{sigma _1}, cdots ,{sigma _r},0, cdots ,0} ight)]

其中${sigma _1}, cdots ,{sigma _r}$为$A'A$的非零特征值的算术平方根

$f命题:$$f(Voss分解)$任意矩阵$A$均可分解为两个对称阵之积,且其中之一可逆

1

$f命题:$$f(Jordan分解)$(1)任意矩阵$A$均可分解为$A = B + C$,且$BC = CB$,其中$B$为可对角化矩阵,$C$为幂零阵

(2)设$A$为$n$阶复方阵,则存在常数项等于$0$的多项式$gleft( lambda   ight),hleft( lambda   ight)$,使得$gleft( A ight)$为可对角化矩阵,$hleft( A ight)$为幂零阵,并且$A = gleft( A ight) + hleft( A ight)$

1

$f命题:$设$A$为$n$阶实矩阵,其特征值都是实数,且$AA' = A'A$,则$A$为实对称阵

1

$f命题:$

 

原文地址:https://www.cnblogs.com/ly142857/p/3674167.html