一些gcd计数问题

数论什么的全都忘光了吧QAQ 做了几道简单的题练习一下。

bzoj1101: [POI2007]Zap

求有多少对数满足 gcd(x,y)=d, 1<=x<=a, 1<=y<=b

首先那个d肯定是要除下去的, 变成 gcd(x,y) = 1, 1<=x<=a, 1<=y<=b这样一个问题。

这样就变成了最经典的莫比乌斯反演, 设f(d)为 gcd(x,y) = d, 1<=x<=a, 1<=y<=b时满足要求的x,y的个数,F(d) = Σ(d|n)f(n) = [a/d] * [b/d], 那么f(1) = Σ μ(d) * [a/d] * [b/d]

复杂度是O(n)的, 但是多组询问会T,这时候想到了bzoj1257 CQOI2007]余数之和sum的思想:对于一个N, [n/d]的取值是sqrt(n)级别的(显然当d <= sqrt(n),只有sqrt(n)个d所以有sqrt(n)中取值, 当d > sqrt(n), n/d < sqrt(n)所以只有sqrt(n)中取值), 所以只要在 a/d或是b/d中有任何一个变化了以后再计算对f(1)的贡献就可以了,存一个μ的前缀和就行了。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #define MAXN 50005
 7 using namespace std;
 8 int T, a, b, d;
 9 int prim[MAXN], pp, isprim[MAXN], miu[MAXN];
10 int main(){
11     scanf("%d", &T);
12     miu[1] = 1;
13     for(int i = 2; i <= 50000; i ++){
14         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
15         for(int j = 1; j <= pp && i*prim[j] <= 50000; j ++){
16             isprim[i*prim[j]] = 1;
17             if(i%prim[j] == 0) break;
18             miu[i*prim[j]] = -miu[i];
19         }
20     }
21     for(int i = 2; i <= 50000; i ++) miu[i] += miu[i-1];
22     while(T --){
23         scanf("%d%d%d", &a, &b, &d); a /= d, b /= d;
24         int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
25         while(1){
26             if(na < nb){
27                 ans += (miu[na]-miu[now-1]) * aa * bb;
28                 now = na+1; if(now > a) break;
29                 aa = a/now;
30                 na = a/aa;
31             }else{
32                 ans += (miu[nb]-miu[now-1]) * aa * bb;
33                 if(na == nb){
34                     now = na+1; if(now > a) break;
35                     aa = a/now;
36                     na = a/aa;        
37                 }
38                 now = nb+1; if(now > b) break;
39                 bb = b/now;
40                 nb = b/bb;
41             }
42         }
43         printf("%d
", ans);
44     }
45 //    system("pause");
46     return 0;
47 }
View Code

bzoj2301: [HAOI2011]Problem b]

求有多少对数满足 gcd(x,y)=k, a<=x<=b, c<=y<=d

上一题然后随便容斥一下,,没什么好说的

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #define MAXN 50005
 7 using namespace std;
 8 int T, a, b, c, d, k;
 9 int prim[MAXN], pp, isprim[MAXN], miu[MAXN];
10 int calc(int a, int b){ if(a <= 0 || b <= 0) return 0;
11     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
12         while(1){
13             if(na < nb){
14                 ans += (miu[na]-miu[now-1]) * aa * bb;
15                 now = na+1; if(now > a) break;
16                 aa = a/now;
17                 na = a/aa;
18             }else{
19                 ans += (miu[nb]-miu[now-1]) * aa * bb;
20                 if(na == nb){
21                     now = na+1; if(now > a) break;
22                     aa = a/now;
23                     na = a/aa;        
24                 }
25                 now = nb+1; if(now > b) break;
26                 bb = b/now;
27                 nb = b/bb;
28             }
29         }
30     return ans;
31 }
32 int main(){
33     scanf("%d", &T);
34     miu[1] = 1;
35     for(int i = 2; i <= 50000; i ++){
36         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
37         for(int j = 1; j <= pp && i*prim[j] <= 50000; j ++){
38             isprim[i*prim[j]] = 1;
39             if(i%prim[j] == 0) break;
40             miu[i*prim[j]] = -miu[i];
41         }
42     }
43     for(int i = 2; i <= 50000; i ++) miu[i] += miu[i-1];
44     while(T --){
45         scanf("%d%d%d%d%d", &a, &b ,&c, &d, &k); a --; c --; a /= k, b /= k, c /= k, d /= k;
46         printf("%d
", calc(b, d) - calc(a, d) - calc(c, b) + calc(a, c));
47     }
48     return 0;
49 }
View Code

bzoj2820: YY的GCD

1<=x<=N1<=y<=Mgcd(x,y)为质数有多少对

天啊窝一定是世界上最后一个知道 [n/(x*y)] = [[n/x]/y] 的人!! QAQ

很显然可以直接枚举一个质数然后然后想原来的题那样做,但是T*600000*n的复杂度肯定无法接受。

ans = ∑(p为质数)∑(d) μ(d)*[n/pd]*[m/pd]

容易想到像之前那样把n和m分块处理一下, 可以做到T*600000*sqrt(n), 但显然还是无法接受QAQ

觉得p为质数这种东西放在外层循环肯定就必须枚举了, 但是如果放在内层可能有奇怪的事情发生?

ans = ∑(d)∑(p为质数) μ(d)*[n/pd]*[m/pd]

感觉很靠谱的样子!但是这里n除了除以一个p以外还除以了一个d, 让内层无法分块了, 所以考虑设一个数s = pd, 那么

ans = ∑(s)[n/s][m/s]∑(p为质数)μ(s/p)

随便算一算发现G(s) = ∑(p为质数)μ(s/p) 的这个函数是可以在线性筛的过程中算出来的!

所以问题转换为 ans = ∑(s)[n/s][m/s]G(s), 随便分块做一下就可以啦!

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cmath>
 4 #include <algorithm>
 5 #include <cstdio>
 6 #define MAXN 10000005
 7 using namespace std;
 8 int T, n, m;
 9 int prim[MAXN], pp, miu[MAXN];
10 long long G[MAXN];
11 bool isprim[MAXN];
12 int main(){
13     scanf("%d", &T);
14     miu[1] = 1;
15     for(int i = 2; i <= 10000000; i ++){
16         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, G[i] = 1;
17         for(int j = 1; j <= pp && i * prim[j] <= 10000000; j ++){
18             isprim[i*prim[j]] = 1;
19             if(i%prim[j] == 0){G[i*prim[j]] = miu[i]; break;}
20             miu[i*prim[j]] = -miu[i]; G[i*prim[j]] = miu[i]-G[i];
21         }
22     }
23     for(int i = 2; i <= 10000000; i ++) G[i] += G[i-1];
24     while(T --){
25         scanf("%d%d", &n, &m);
26         int now = 1, nn = n, mm = m, nen = n/nn, nem = m/mm; long long ans = 0;
27         while(1){
28             if(nen < nem){
29                 ans += (G[nen]-G[now-1])*nn*mm;
30                 now = nen+1; if(now > n) break;
31                 nn = n/now;
32                 nen = n/nn;
33             }else{
34                 ans += (G[nem]-G[now-1])*nn*mm;
35                 if(nen == nem){
36                     now = nen + 1; if(now > n) break;
37                     nn = n/now;
38                     nen = n/nn;
39                 }
40                 now = nem + 1; if(now > m) break;
41                 mm = m/now;
42                 nem = m/mm;
43             }
44         }
45         printf("%lld
", ans);
46     }
47     return 0;
48 }
View Code

[bzoj2705: [SDOI2012]Longge的问题]

求 sigma(gcd(i,n), 1<=i<=n<2^32)

很简单的题。ans = ∑(p|n) phi(n/p)*p

显然无法线性筛预处理phi, 那么就用 phi(n) =  n * ∏((pi-1)/pi)这个式子, dfs一遍就好啦。

对了这道题虽然它说 n <= 1<<32 但实际上没有n>=1<<31的情况诶!除了ans以外全部开int有机会从8ms降到4ms,,,,(好无聊

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <algorithm>
 5 #include <cstring>
 6 #define ll long long
 7 using namespace std;
 8 int m, N, bin[33], cbin[33], cnt;
 9 ll ans;
10 void dfs(int x, int s, int phin){
11     if(x == cnt+1){
12         ans += phin*(m/s); return;
13     }
14     dfs(x+1, s, phin);
15     s*=bin[x],phin*=(bin[x]-1);
16     for(int i = 1; i <= cbin[x]; i ++){
17         dfs(x+1, s, phin);
18         s *= bin[x]; phin *= bin[x];
19     }
20 }
21 int main(){
22     cin >> N; m = N;
23     for(int i = 2; i*i <= N; i ++)if(N%i==0){
24         bin[++cnt] = i;
25         while(N%i==0)cbin[cnt] ++, N/=i;
26     }
27     if(N)bin[++cnt]=N, cbin[cnt] = 1;
28     dfs(1, 1, 1);
29     printf("%lld
", ans);
30     return 0;
31 }
View Code

3529: [Sdoi2014]数表

有一张N×m的数表,其第i行第j列(1 < =i < = n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

感觉这题挺神的。

先不考虑a, 如何计算数表中所有数之和呢?

设F(x) 为能整除x的所有自然数之和, 这个可以线性筛时胡乱搞搞算出来。

 ans = sigema{F(gcd(i,j)) }

= sigema(p) { sigema(d){miu(d)*[n/dp]*[m/dp]} * F(p)}

然后像bzoj2820: YY的GCD 那样, 试图把可以sqrt(n)计算的[n/dp]什么的挪到外层以降低复杂度

[n/dp] 和[m/dp] 这两项以外包含了/p的, 只要乘上p以后就可以挪到外边了

ans = sigema(p){ sigema(p|d){miu(d/p)*[n/d]*[m/d]} * F(p)}

= sigema(d){ [n/d]*[m/d] * sigema(p|d){miu(d/p) * F(p)} }

好啦!现在只需要能够预处理出来 G(x) = sigema(p|x){miu(x/p)*F(p)} 就可以分块前缀和啦!

因为约数的期望是O(logn)的所以只要暴力一下就可以做到O(nlogn)的复杂度啦!

现在考虑原问题。。。。。。。。。感觉a这个条件都要被遗忘了。

如果F(x) > a的话, 直接让F(x) = 0 就可以了! 所以只要把询问离线, 按a排一个序, 再把F(x)排一个序, 一个一个加进去, 加的时候用树状数组维护前缀和就可以了!好机智啊!

复杂度 O(nlog^2n + q*sqrt(n)*logn)

话说我知道现在还会在取模意义下做减法的时候不再加上一个mod ,,,,,,被自己蠢哭啦QAQ

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cmath>
 4 #include <cstring>
 5 #include <algorithm>
 6 #define MAXN 100005
 7 #define lowbit(x) (x&(-x))
 8 using namespace std;
 9 int T, N, prim[MAXN], pp, isprim[MAXN], miu[MAXN], cm[MAXN], fs[MAXN], A[MAXN], ans[MAXN];
10 inline void Add(int x, int c){
11     for(; x <= N; x += lowbit(x)) A[x] += c;
12 }
13 inline int Sum(int x){
14     int ret = 0;
15     for(; x; x -= lowbit(x)) ret += A[x];
16     return ret;
17 }
18 struct FF{int f, x;}F[MAXN];
19 struct point{int n, m, a, num;}p[20005];
20 bool cmp(point x, point y){return x.a < y.a;}
21 bool cmpf(FF a, FF b){return a.f < b.f;}
22 inline void Insert(int x, int c){
23     for(int i = 1; i*x <= N; i ++) Add(i*x, c*miu[i]);
24 }
25 int calc(int a, int b){
26     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0, pre = 0, la;
27         while(1){
28             if(na < nb){
29                 la = Sum(na);
30                 ans += (la-pre) * aa * bb;
31                 pre = la;
32                 now = na+1; if(now > a) break;
33                 aa = a/now;
34                 na = a/aa;
35             }else{
36                 la = Sum(nb);
37                 ans += (la-pre) * aa * bb;
38                 pre = la;
39                 if(na == nb){
40                     now = na+1; if(now > a) break;
41                     aa = a/now;
42                     na = a/aa;        
43                 }
44                 now = nb+1; if(now > b) break;
45                 bb = b/now;
46                 nb = b/bb;
47             }
48         }
49     return ans;
50 }
51 int main(){
52     scanf("%d", &T);
53     miu[1] = F[1].f = F[1].x = 1;
54     for(int i = 2; i <= 100000; i ++){
55         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, F[i].f = i+1, cm[i] = i, fs[i] = 1;
56         for(int j = 1; j <= pp && i*prim[j] <= 100000; j ++){
57             isprim[i*prim[j]] = 1;
58             if(i%prim[j] == 0){
59                 miu[i*prim[j]] = 0;
60                 F[i*prim[j]].f = F[i].f + fs[i]*cm[i]*prim[j];
61                 cm[i*prim[j]] = cm[i]*prim[j];
62                 fs[i*prim[j]] = fs[i];
63                 break;
64             }
65             miu[i*prim[j]] = -miu[i];
66             F[i*prim[j]].f = F[i].f*(1+prim[j]);
67             cm[i*prim[j]] = prim[j], fs[i*prim[j]] = F[i].f;
68         }
69         F[i].x = i;
70     }
71     for(int i = 1; i <= T; i ++) scanf("%d%d%d", &p[i].n, &p[i].m, &p[i].a), p[i].num = i, N = max(N, max(p[i].n,p[i].m));
72     sort(p + 1, p + T + 1, cmp);
73     sort(F + 1, F + 100000+1, cmpf);
74     int jj = 1;
75     for(int i = 1; i <= T; i ++){
76         while(jj <= 100000 && F[jj].f <= p[i].a){Insert(F[jj].x, F[jj].f); jj ++;}
77         ans[p[i].num] = calc(p[i].n, p[i].m)&((1<<31)-1);
78     }
79     for(int i = 1; i <= T; i ++) printf("%d
", ans[i]);
80     return 0;
81 }
View Code

BZOJ 2154 Crash的数字表格

求Σ[1<=i<=n]Σ[1<=j<=m]LCM(i,j) mod 20101009

这题没什么技巧,直接倒一下就可以了。

ans = sigema(p) {i*j/p ((i,j)=p) }

设S(x) = x*(x-1)/2 

ans = sigema(p) { sigema(d){miu(d)*S(n/pd)*S(m/pd)*d2}*p }

然后分块套分块做一遍就好了 O(sqrt(n)*sqrt(n)) = O(n)

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #define ll long long
 7 #define mod 20101009
 8 #define MAXN 10000005
 9 using namespace std;
10 int N, n, m, prim[MAXN], isprim[MAXN], pp;
11 ll sum[MAXN], miu[MAXN];
12 ll SS(ll x, ll y){
13     return (((x*(x+1)/2)%mod) * ((y*(y+1)/2)%mod) )%mod;
14 }
15 ll F(int a, int b){
16     int now = 1, aa = a, bb = b, na = 1, nb = 1;
17     ll ans = 0;
18     while(1){
19         if(na < nb){
20             (ans += SS(a/now, b/now) * ((miu[na]-miu[now-1]+mod)%mod) %mod )%=mod;
21             now = na+1; if(now > a) break;
22             aa = a/now;
23             na = a/aa;
24         }else{
25             (ans += SS(a/now, b/now) * ((miu[nb]-miu[now-1]+mod)%mod) %mod ) %= mod;
26             if(na == nb){
27                 now = na+1; if(now > a) break;
28                 aa = a/now;
29                 na = a/aa;        
30             }
31             now = nb+1; if(now > b) break;
32             bb = b/now;
33             nb = b/bb;
34         }
35     }
36     return ans;
37 }
38 ll calc(int a, int b){
39     int now = 1, aa = a, bb = b, na = 1, nb = 1;
40     ll ans = 0;
41     while(1){
42         if(na < nb){
43             (ans += F(a/now, b/now) * ((sum[na]-sum[now-1]+mod)%mod) %mod ) %=mod;
44             now = na+1; if(now > a) break;
45             aa = a/now;
46             na = a/aa;
47         }else{
48             (ans += F(a/now, b/now) * ((sum[nb]-sum[now-1]+mod)%mod) %mod )%=mod;
49             if(na == nb){
50                 now = na+1; if(now > a) break;
51                 aa = a/now;
52                 na = a/aa;        
53             }
54             now = nb+1; if(now > b) break;
55             bb = b/now;
56             nb = b/bb;
57         }
58     }
59     return ans;
60 }
61 int main(){
62     scanf("%d%d", &n, &m); N = min(n, m);
63     miu[1] = 1;
64     for(int i = 2; i <= N; i ++){
65         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1;
66         for(int j = 1; j <= pp && i*prim[j]<=N; j ++){
67             isprim[i*prim[j]] = 1;
68             if(i%prim[j] == 0) break;
69             miu[i*prim[j]] = -miu[i];
70         }
71     }
72     for(int i = 1; i <= N; i ++) sum[i] = (sum[i-1]+i)%mod, miu[i] = (miu[i-1]+miu[i]*i*i)%mod;
73     cout << calc(n, m)<<endl;
74     return 0;
75 }
View Code

2693: jzptab

上一题的加强版, 1000组数据。

又是这样!窝打了很多东西后电脑崩了都没存下来QAQ

思路不难,考虑把上一题的那个式子继续化简, 像以前的方法一样通过把里面的那个多项式都乘上一个p或是用换元把pd换成S(其实这两种方法本质上是一样的), 然后就可以成功地把[n/p]这个非常棒的可以sqrt(n)搞出来的东西放到外层多项式了,现在只要考虑如何O(n)地预处理出内层多项式。 

G(d) = sigema(i|d) {d/i * i2 * μ(i)} = d* sigema(i|d) {d*μ(d)}

用莫比乌斯反演推一下容易得出积性函数的因数和也是积性函数, 所以G(d)是积性函数, 线性筛一遍随便搞一搞就可以了

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath> 
 5 #include <algorithm>
 6 #define mod 100000009
 7 #define MAXN 10000005
 8 #define ll long long
 9 using namespace std;
10 int T, N, M, prim[MAXN], pp, miu[MAXN], isprim[MAXN];
11 ll G[MAXN];
12 ll SS(ll a, ll b){return (((a*(a+1)/2)%mod)*((b*(b+1)/2)%mod))%mod;}
13 int calc(int a, int b){
14     int now = 1, aa = a, bb = b, na = 1, nb = 1, ans = 0;
15         while(1){
16             if(na < nb){
17                 (ans += ((G[na]-G[now-1]) * SS(aa, bb))%mod)%=mod;
18                 now = na+1; if(now > a) break;
19                 aa = a/now;
20                 na = a/aa;
21             }else{
22                 (ans += ((G[nb]-G[now-1]) * SS(aa, bb))%mod)%=mod;
23                 if(na == nb){
24                     now = na+1; if(now > a) break;
25                     aa = a/now;
26                     na = a/aa;        
27                 }
28                 now = nb+1; if(now > b) break;
29                 bb = b/now;
30                 nb = b/bb;
31             }
32         }
33     return ans;
34 }
35 int main(){
36     miu[1] = 1; G[1] = 1;
37     for(int i = 2; i <= 10000000; i ++){
38         if(!isprim[i]) prim[++ pp] = i, miu[i] = -1, G[i] = (1-i+mod)%mod;
39         for(int j = 1; j <= pp && i*prim[j] <= 10000000; j ++){
40             isprim[i*prim[j]] = 1;
41             if(i%prim[j] == 0){
42                 G[i*prim[j]] = G[i]; break;
43             }
44             miu[i*prim[j]] = -miu[i];
45             G[i*prim[j]] = (G[i]*G[prim[j]])%mod;
46         }
47     }
48     for(int i = 1; i <= 10000000; i ++) G[i] = (G[i-1] + G[i]*i)%mod;
49     scanf("%d", &T);
50     while(T--){
51         int a, b; scanf("%d%d", &a, &b);
52         printf("%d
", (calc(a, b)+mod)%mod);
53     }
54     return 0;
55 }
View Code

总结

上面的这些题其实都是一个问题换一下形式而已,可以起名叫做“gcd计数问题”?无非是看到要求一个gcd相关的东西, 然后不好做, 所以要莫比乌斯反演一下把(x,y)=d转化为(d|x 且 d|y), 这就是一个直接用除法取整可以解决的问题了,而除法取整有一个非常好的性质就是不同的 f(x) = x/i 的数量是 sqrt(x)级别的, 如果可以把他提出来且把它里面的东西的前缀和预处理出来就可以O(sqrt(n))地解决这个问题。有的时候 [x/ij] 被套在了内层于是只能O(sqrt(n))地算出内层部分, 不能接受, 于是就要想办法把[x/ij]换到外层, 内层整体乘上j就可以了,然后再考虑如何O(n)地计算被换到内层的部分的前缀和就可以了。

原文地址:https://www.cnblogs.com/lixintong911/p/5129076.html