意图识别及槽填充联合模型Slot-Gated Modeling

在《Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling》中的模型attention-based rNN model基础上,提出了slot-gate门。

通过slot-gate来加强intent与slot任务的交互性。见文章《Slot-Gated Modeling for Joint Slot Filling and Intent Prediction》。

模型步骤:

1.意图识别是利用encoder中的最后一个time step中的双向隐层,利用attention加权平均,最后接一个fc层进行分类

2.槽填充是序列标注,双向隐状态加attention权重,最后接一个fc层分类。

 a.上图a中模型结构,利用了slot attention与intent attention。经过gate门后的值与每个时间步中的slot attention进行交互。

 b.上图b中模型结构,只利用了intent attention。经过gate门后的值与每个时间步的隐状态进行交互。

3.总的loss = 意图识别loss + 槽填充loss

 

一.attention-based rnn 模型步骤:

1.底层是bilstm或bigru,输入为用户语句序列,输出为隐状态

2.槽填充为序列标注任务,将用户语句序列映射到槽标签中。

slot context vector:

槽注意力向量是隐状态加权和:

(1)

槽注意力权重:

(2)

最后将隐状态和槽上下文向量$c^S_i$用于预测标签序列:

(3)

这里的slot context vector就是对于每个位置$i$,有一个对应的前馈网络权重,经过前馈网络和激活函数得到$e_i^S$,经过softmax得到$alpha^S_i$。再由(1)得到slot上下文向量。

3.意图识别为分类任务,用bilstm或bigru最后一个时间步隐状态进行预测。

intent context vector:

注意力向量的计算和槽注意力向量计算一致:

(4)

注意力权重:

(5)

最后一个隐状态和意图上下文向量$c^I$用于预测意图类别:

(6)

slot-gate机制

(7)

带slot-attention和intent-attention的gate机制

slot-gate的计算:

(8)

这里的$g$可看做是一个加权特征,那么(3)式中的槽序列预测公式可改为:

(9)

g越大,表示slot context vector和intent context vector关注的是输入序列的同一部分,也说明槽与意图之间的相关性更强,则context vector对预测结果的贡献更可靠。

只带intent-attention的gate机制,将(8)和(9)改为如下:

(10)

二.模型代码:

完整程序见https://github.com/jiangnanboy/intent_detection_and_slot_filling/tree/master/model3

# build model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
      
        
# 构建slotgate计算方式,利用slot context与intent context
class SlotGate(nn.Module):
    def __init__(self, hidden_dim):
        super(SlotGate, self).__init__()
        self.fc_intent_context = nn.Linear(hidden_dim, hidden_dim)
        self.fc_v = nn.Linear(hidden_dim, hidden_dim)
        
    def forward(self, slot_context, intent_context):
        '''
        注意这里slot_context是slot上下文context,[batch_size, hidden_dim],或者是时间步的hidden
        intent_context:[batch_size, hidden_dim]
        '''
        # intent_context_linear:[batch_size, hidden_dim]
        intent_context_linear = self.fc_intent_context(intent_context)
        
        # sum_intent_slot_context:[batch_size, hidden_dim]
        sum_intent_slot_context = slot_context + intent_context_linear
        
        # fc_linear:[batch_size, hidden_dim]
        fc_linear = self.fc_v(torch.tanh(sum_intent_slot_context))
        
        # sum_gate_vec:[batch_size]
        sum_gate_vec = torch.sum(fc_linear, dim=1)
        
        return sum_gate_vec
    
# 这里计算slot context与intent context。就是bigru每个时间步隐藏特征的加权向量,这里不同于原论文的计算方式,这里使用点乘来计算注意力权重weight
class AttnContext(nn.Module):
    def __init__(self, hidden_dim):
        super(AttnContext, self).__init__()

    def forward(self, hidden, source_output_hidden):
        # source_output_hidden:[batch_size, seq_len, hidden_size]
        # hidden:[batch_size, hidden_size]
        hidden = hidden.unsqueeze(1) # [batch_size, 1, hidden_size]
        
        attn_weight = torch.sum(hidden * source_output_hidden,dim=2) # [batch_size, seq_len]
        
        attn_weight = F.softmax(attn_weight, dim=1).unsqueeze(1) # [batch_size, 1, seq_len]
        
        # 类似于注意力向量
        attn_vector = attn_weight.bmm(source_output_hidden) # [batch_size, 1, hidden_size]
        
        return attn_vector.squeeze(1) # [batch_size, hidden_size]


#构建模型
class BirnnAttentionGate(nn.Module):
    def __init__(self, source_input_dim, source_emb_dim, hidden_dim, n_layers, dropout, pad_index, slot_output_size, intent_output_size, seq_len, predict_flag, slot_attention_flag):
        super(BirnnAttentionGate, self).__init__()
        self.pad_index = pad_index
        self.hidden_dim = hidden_dim//2 # 双向lstm
        self.n_layers = n_layers
        self.slot_output_size = slot_output_size
        # 是否预测模式
        self.predict_flag = predict_flag
        # 原论文中有两种模型结构,一个带slot_attention,一个不带slot_attention
        self.slot_attention_flag = slot_attention_flag
        
        self.source_embedding = nn.Embedding(source_input_dim, source_emb_dim, padding_idx=pad_index)
        # 双向gru,隐层维度是hidden_dim
        self.source_gru = nn.GRU(source_emb_dim, self.hidden_dim, n_layers, dropout=dropout, bidirectional=True, batch_first=True) #使用双向
        
        # slot context
        self.slot_context = AttnContext(hidden_dim)
        
        # intent context
        self.intent_context = AttnContext(hidden_dim)
        
        # slotgate类
        self.slotGate = SlotGate(hidden_dim)
        
        # 意图intent预测
        self.intent_output = nn.Linear(hidden_dim, intent_output_size)
        
        # 槽slot预测
        self.slot_output = nn.Linear(hidden_dim, slot_output_size)
        
        
    def forward(self, source_input, source_len):
        '''
        source_input:[batch_size, seq_len]
        source_len:[batch_size]
        '''
        if self.predict_flag:
            assert len(source_input) == 1, '预测时一次输入一句话'
            seq_len = source_len[0]
            
            # 将输入的source进行编码
            # source_embedded:[batch_size, seq_len, source_emb_dim]
            source_embedded = self.source_embedding(source_input)
            packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序
            source_output, hidden = self.source_gru(packed)
            # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim
            # hidden=[n_layers * 2, batch_size, self.hidden_size]
            source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths
            
            batch_size = source_input.shape[0]
            seq_len = source_input.shape[1]
            # 保存slot的预测概率
            slot_outputs = torch.zeros(batch_size, seq_len, self.slot_output_size).to(device)       
                
            aligns = source_output.transpose(0,1) # 为了拿到每个时间步的输出特征,即每个时间步的隐藏向量
            
            output_tokens =[]
                
            # 槽识别
            for t in range(seq_len):
                '''
                此时刻时间步的输出隐向量
                '''
                aligned = aligns[t]# [batch_size, hidden_size]
                    
                # 是否需要计算slot attention
                if self.slot_attention_flag:
                    
                    # [batch_size, hidden_size]
                    slot_context = self.slot_context(aligned, source_output)
                    
                    # [batch_size, hidden_size],意图上下文向量,利用bigru最后一个时间步的隐状态
                    intent_context = self.intent_context(source_output[:,-1,:], source_output)
                    
                    # gate机制,[batch_size]
                    slot_gate = self.slotGate(slot_context, intent_context)
                    
                    # slot_gate:[batch_size, 1]
                    slot_gate = slot_gate.unsqueeze(1)
                    
                    # slot_context_gate:[batch_size, hidden_dim]
                    slot_context_gate = slot_gate * slot_context
                    
                # 否则,利用每个时间步的隐状态与intent context计算slot gate
                else:
                     # [batch_size, hidden_size],意图上下文向量,利用bigru最后一个时间步的隐状态
                    intent_context = self.intent_context(source_output[:,-1,:], source_output)
                    
                    # gate机制,[batch_size]
                    slot_gate = self.slotGate(source_output[:,t,:], intent_context)
                    
                     # slot_gate:[batch_size, 1]
                    slot_gate = slot_gate.unsqueeze(1)
                    
                    # slot_context_gate:[batch_size, hidden_dim]
                    slot_context_gate = slot_gate * source_output[:,t,:]
                
                
                
                # 预测槽slot, [batch_size, slot_output_size]
                slot_prediction = self.slot_output(slot_context_gate + source_output[:,t,:])
                slot_outputs[:, t, :] = slot_prediction
                
                
            #意图识别
            intent_outputs = self.intent_output(intent_context + source_output[:,-1,:])

            return slot_outputs, intent_outputs
            
        # 训练阶段
        else:
            # 将输入的source进行编码
            # source_embedded:[batch_size, seq_len, source_emb_dim]
            source_embedded = self.source_embedding(source_input)
            packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序
            source_output, hidden = self.source_gru(packed)
            # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim
            # hidden=[n_layers * 2, batch_size, self.hidden_size]
            source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths
            
            batch_size = source_input.shape[0]
            seq_len = source_input.shape[1]
            # 保存slot的预测概率
            slot_outputs = torch.zeros(batch_size, seq_len, self.slot_output_size).to(device)       
                
            aligns = source_output.transpose(0,1) # 为了拿到每个时间步的输出特征,即每个时间步的隐藏向量
                
            # 槽识别
            for t in range(seq_len):
                '''
                此时刻时间步的输出隐向量
                '''
                aligned = aligns[t]# [batch_size, hidden_size]
                    
                # 是否需要计算slot attention
                if self.slot_attention_flag:
                    
                    # [batch_size, hidden_size]
                    slot_context = self.slot_context(aligned, source_output)
                    
                    # [batch_size, hidden_size],意图上下文向量,利用bigru最后一个时间步的隐状态
                    intent_context = self.intent_context(source_output[:,-1,:], source_output)
                    
                    # gate机制,[batch_size]
                    slot_gate = self.slotGate(slot_context, intent_context)
                    
                    # slot_gate:[batch_size, 1]
                    slot_gate = slot_gate.unsqueeze(1)
                    
                    # slot_context_gate:[batch_size, hidden_dim]
                    slot_context_gate = slot_gate * slot_context
                    
                # 否则,利用每个时间步的隐状态与intent context计算slot gate
                else:
                     # [batch_size, hidden_size],意图上下文向量,利用bigru最后一个时间步的隐状态
                    intent_context = self.intent_context(source_output[:,-1,:], source_output)
                    
                    # gate机制,[batch_size]
                    slot_gate = self.slotGate(source_output[:,t,:], intent_context)
                    
                     # slot_gate:[batch_size, 1]
                    slot_gate = slot_gate.unsqueeze(1)
                    
                    # slot_context_gate:[batch_size, hidden_dim]
                    slot_context_gate = slot_gate * source_output[:,t,:]
                
                
                
                # 预测槽slot, [batch_size, slot_output_size]
                slot_prediction = self.slot_output(slot_context_gate + source_output[:,t,:])
                slot_outputs[:, t, :] = slot_prediction
                
                
            #意图识别
            intent_outputs = self.intent_output(intent_context + source_output[:,-1,:])

            return slot_outputs, intent_outputs
        

原文地址:https://www.cnblogs.com/little-horse/p/14435386.html