意图识别及槽填充联合模型Attention-Based RNN Model

一.智能对话中的意图识别和槽填充联合建模,类似于知识图谱中的关系提取和实体识别。一种方法是利用两种模型分别建模;另一种是将两种模型整合到一起做联合建模型。意图识别基本上是文本分类,而槽填充基本上是序列标注。本方法是基于文章《Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling》中提到的另一种方法Attention-Based RNN Model做联合建模。模型结构如下图:

此模型利用birnn-attention实现:

1.意图识别是利用encoder中的最后一个time step中的双向隐层,再加上平均池化或者利用attention加权平均,最后接一个fc层进行分类

2.槽填充是序列标注,双向隐状态加attention权重,再经过一个单元grucell,最后接一个fc层分类。这里注意一点是,槽的每一步的预测输出会输入到grucell中的前向传输时间步中。

3.总的loss = 意图识别loss + 槽填充loss

二.模型程序(完整程序见https://github.com/jiangnanboy/intent_detection_and_slot_filling/tree/master/model2)

1.构建train及val 数据,采用torchtext。其中SOURCE是源句,TARGET是标注,LABEL是意图类别

'''
build train and val dataset
'''
    
tokenize = lambda s:s.split()

SOURCE = data.Field(sequential=True, tokenize=tokenize,
                    lower=True, use_vocab=True,
                    init_token='<sos>', eos_token='<eos>',
                    pad_token='<pad>', unk_token='<unk>',
                    batch_first=True, fix_length=50,
                    include_lengths=True) #include_lengths=True为方便之后使用torch的pack_padded_sequence

TARGET = data.Field(sequential=True, tokenize=tokenize,
                    lower=True, use_vocab=True,
                    init_token='<sos>', eos_token='<eos>',
                    pad_token='<pad>', unk_token='<unk>',
                    batch_first=True, fix_length=50,
                    include_lengths=True) #include_lengths=True为方便之后使用torch的pack_padded_sequence
LABEL = data.Field(
                sequential=False,
                use_vocab=True)

train, val = data.TabularDataset.splits(
                                        path=atis_data,
                                        skip_header=True,
                                        train='atis.train.csv',
                                        validation='atis.test.csv',
                                        format='csv',
                                        fields=[('index', None), ('intent', LABEL), ('source', SOURCE), ('target', TARGET)])

SOURCE.build_vocab(train, val)
TARGET.build_vocab(train, val)
LABEL.build_vocab(train, val)

train_iter, val_iter = data.Iterator.splits(
                                            (train, val),
                                            batch_sizes=(32, len(val)), # 训练集设置为64,验证集整个集合用于测试
                                            shuffle=True,
                                            sort_within_batch=True, #为true则一个batch内的数据会按sort_key规则降序排序
                                            sort_key=lambda x: len(x.source)) #这里按src的长度降序排序,主要是为后面pack,pad操作)

2.构建模型

# build model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 构建attention权重计算方式
class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.attn = nn.Linear((hidden_dim * 2), hidden_dim)
        self.v = nn.Linear(hidden_dim, 1, bias=False)

    def concat_score(self, hidden, encoder_output):
        seq_len = encoder_output.shape[1]
        hidden = hidden.unsqueeze(1).repeat(1, seq_len, 1) # [batch_size, seq_len, hidden_size]
        energy = torch.tanh(self.attn(torch.cat((hidden, encoder_output),dim=2))) # [batch_size, seq_len, hidden_dim]
        attention = self.v(energy).squeeze(2) #[batch_size, seq_len]
        return attention #[batch_size, seq_len]

    def forward(self, hidden, encoder_output):
        # hidden = [batch_size, hidden_size]
        # #encoder_output=[batch_size, seq_len, hidden_size]
        
        attn_energies = self.concat_score(hidden, encoder_output)

        return F.softmax(attn_energies, dim=1).unsqueeze(1) #softmax归一化,[batch_size, 1, seq_len]
    
#构建模型
class BirnnAttention(nn.Module):
    def __init__(self, source_input_dim, source_emb_dim, hidden_dim, n_layers, dropout, pad_index, slot_output_size, intent_output_size, slot_embed_dim, predict_flag):
        super(BirnnAttention, self).__init__()
        self.pad_index = pad_index
        self.hidden_dim = hidden_dim//2 # 双向lstm
        self.n_layers = n_layers
        self.slot_output_size = slot_output_size
        # 是否预测模式
        self.predict_flag = predict_flag
        
        self.source_embedding = nn.Embedding(source_input_dim, source_emb_dim, padding_idx=pad_index)
        # 双向gru,隐层维度是hidden_dim
        self.source_gru = nn.GRU(source_emb_dim, self.hidden_dim, n_layers, dropout=dropout, bidirectional=True, batch_first=True) #使用双向
        
        
        # 单个cell的隐层维度与gru隐层维度一样,为hidden_dim
        self.gru_cell = nn.GRUCell(slot_embed_dim + (2 * hidden_dim), hidden_dim)
        self.attention = Attention(hidden_dim)
        # 意图intent预测
        self.intent_output = nn.Linear(hidden_dim * 2, intent_output_size)
        # 槽slot预测
        self.slot_output = nn.Linear(hidden_dim, slot_output_size)
        self.slot_embedding = nn.Embedding(slot_output_size, slot_embed_dim)
        
    def forward(self, source_input, source_len):
        '''
        source_input:[batch_size, seq_len]
        source_len:[batch_size]
        '''
        if self.predict_flag:
            assert len(source_input) == 1, '预测时一次输入一句话'
            seq_len = source_len[0]
            
            # 1.Encoder阶段,将输入的source进行编码
            # source_embedded:[batch_size, seq_len, source_emb_dim]
            source_embedded = self.source_embedding(source_input)
            packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序
            source_output, hidden = self.source_gru(packed)
            # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim
            # hidden=[n_layers * 2, batch_size, self.hidden_size]
            source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths
            '''
            source_hidden[-2,:,:]是gru最后一步的forward
            source_hidden[-1,:,:]是gru最后一步的backward
            '''
            # source_hidden=[batch_size, 2*self.hidden_size]
            source_hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)
            #保存注意力向量
            attention_context = torch.zeros(1, seq_len, self.hidden_dim * 2)
            output_tokens = []
           
            aligns = source_output.transpose(0,1) #对齐向量
            
            input = torch.tensor(2).unsqueeze(0)  # 预测阶段解码器输入第一个token-> <sos>
            for s in range(seq_len):
                aligned = aligns[s].unsqueeze(1)# [batch_size, 1, hidden_size*2]
                 # embedded=[1, 1, slot_embed_dim]
                slot_embedded = self.slot_embedding(input)
                slot_embedded = slot_embedded.unsqueeze(0)
                # 利用利用上一步的hidden与encoder_output,计算attention权重
                # attention_weights=[batch_size, 1, seq_len]
                attention_weights = self.attention(source_hidden, source_output)

                '''
                以下是计算上下文:利用attention权重与encoder_output计算attention上下文向量
                注意力权重分布用于产生编码器隐藏状态的加权和,加权平均的过程。得到的向量称为上下文向量
                '''
                context = attention_weights.bmm(source_output)
                attention_context[:,s,:] = context
              
                combined_grucell_input = torch.cat([aligned, slot_embedded, context], dim =2)
             
                source_hidden = self.gru_cell(combined_grucell_input.squeeze(1), source_hidden)
              
                slot_prediction = self.slot_output(source_hidden)
            
                input = slot_prediction.argmax(1)
                output_token = input.squeeze().detach().item()
               
                output_tokens.append(output_token)
            
             #意图识别
            #拼接注意力向量和encoder的输出
            combined_attention_sourceoutput = torch.cat([attention_context, source_output], dim=2)
            intent_outputs = self.intent_output(torch.mean(combined_attention_sourceoutput, dim = 1))
            intent_outputs = intent_outputs.squeeze()
            intent_outputs = intent_outputs.argmax()
            return output_tokens, intent_outputs
        
        else:
            # 1.Encoder阶段,将输入的source进行编码
            # source_embedded:[batch_size, seq_len, source_emb_dim]
            source_embedded = self.source_embedding(source_input)
            packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序
            source_output, hidden = self.source_gru(packed)
            # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim
            # hidden=[n_layers * 2, batch_size, self.hidden_size]
            source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths
            '''
            source_hidden[-2,:,:]是gru最后一步的forward
            source_hidden[-1,:,:]是gru最后一步的backward
            '''
            # source_hidden=[batch_size, 2*self.hidden_size]
            source_hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)


            # 2.Decoder阶段,预测slot与intent
            batch_size = source_input.shape[0]
            seq_len = source_input.shape[1]
            # 保存slot的预测概率
            slot_outputs = torch.zeros(batch_size, seq_len, self.slot_output_size).to(device)

            #保存注意力向量
            attention_context = torch.zeros(batch_size, seq_len, self.hidden_dim * 2).to(device)

            # 每个batch数据的第一个字符<sos>对应的是index是2
            input = torch.tensor(2).repeat(batch_size).to(device)
            aligns = source_output.transpose(0,1) # 利用encoder output最后一层的每一个时间步
            # 槽识别
            for t in range(1, seq_len):
                '''
                解码器输入的初始hidden为encoder的最后一步的hidden
                接收输出即predictions和新的hidden状态
                '''
                aligned = aligns[t].unsqueeze(1)# [batch_size, 1, hidden_size] # hidden_size包含前向和后向隐状态向量
                input = input.unsqueeze(1)
                # input=[batch_size, 1]
                # hidden=[batch_size, hidden_size] 初始化为encoder的最后一层 [batch_size, hidden_size]
                # encoder_output=[batch_size, seq_len, hidden_dim*2]
                # aligned=[batch_size, 1, hidden_dim*2]

                # embedded=[batch_sze, 1, slot_embed_dim]
                slot_embedded = self.slot_embedding(input)

                # 利用利用上一步的hidden与encoder_output,计算attention权重
                # attention_weights=[batch_size, 1, seq_len]
                attention_weights = self.attention(source_hidden, source_output)

                '''
                以下是计算上下文:利用attention权重与encoder_output计算attention上下文向量
                注意力权重分布用于产生编码器隐藏状态的加权和,加权平均的过程。得到的向量称为上下文向量
                '''
                context = attention_weights.bmm(source_output) # [batch_size, 1, seq_len] * [batch_size, seq_len, hidden_dim]=[batch_size, 1, hidden_dim]
                attention_context[:,t,:] = context.squeeze(1)
                #combined_grucell_input=[batch_size, 1, (hidden_size + slot_embed_dim + hidden_dim)]
                combined_grucell_input = torch.cat([aligned, slot_embedded, context], dim =2)
                # [batch_size, hidden_dim]
                source_hidden = self.gru_cell(combined_grucell_input.squeeze(1), source_hidden)
                # 预测slot, [batch_size, slot_output_size]
                slot_prediction = self.slot_output(source_hidden)
                slot_outputs[:, t, :] = slot_prediction
                # 获取预测的最大概率的token
                input = slot_prediction.argmax(1)
            #意图识别,不同于原论文。这里拼接了slot所有时间步attention_context与句子编码后的输出,通过均值后作为意图识别的输入
            #拼接注意力向量和encoder的输出,[batch_size, seq_len, hidden_dim * 2]
            combined_attention_sourceoutput = torch.cat([attention_context, source_output], dim=2)
            intent_outputs = self.intent_output(torch.mean(combined_attention_sourceoutput, dim = 1))

            return slot_outputs, intent_outputs

3.loss,这里迭代的次数为10

4.predict预测

原文地址:https://www.cnblogs.com/little-horse/p/14395744.html