textrcnn用于问答中的意图识别

一.利用textrcnn进行文本分类,用于在问答中的意图识别。

二.结构图

三.程序(完整程序:https://github.com/jiangnanboy/movie_knowledge_graph_app/tree/master/intent_classification/pytorch/textrcnn)

import os
import torch
from torchtext import data,datasets
from torchtext.data import Iterator, BucketIterator
from torchtext.vocab import Vectors
from torch import nn,optim
import torch.nn.functional as F
import pandas as pd
import pickle

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

intent_classification_path = os.path.abspath(os.path.join(os.getcwd(), '../..'))
# 训练数据路径
train_data = os.path.join(intent_classification_path,'classification_data/classification_data.csv')
# 读取数据
train_data = pd.read_csv(train_data)
# 按字分    
tokenize =lambda x: x.split(' ')

TEXT = data.Field(
                    sequential=True,
                    tokenize=tokenize,
                    lower=True,
                    use_vocab=True,
                    pad_token='<pad>',
                    unk_token='<unk>',
                    batch_first=True,
                    fix_length=20)

LABEL = data.Field(
                    sequential=False,
                    use_vocab=False)
# 获取训练或测试数据集
def get_dataset(csv_data, text_field, label_field, test=False):
    fields = [('id', None), ('text', text_field), ('label', label_field)]
    examples = []
    if test: #测试集,不加载label
        for text in csv_data['text']:
            examples.append(data.Example.fromlist([None, text, None], fields))
    else: # 训练集
        for text, label in zip(csv_data['text'], csv_data['label']):
            examples.append(data.Example.fromlist([None, text, label], fields))
    return examples, fields

train_examples,train_fields = get_dataset(train_data, TEXT, LABEL)

train = data.Dataset(train_examples, train_fields)
# 预训练数据
pretrained_embedding = os.path.join(os.getcwd(), 'sgns.sogou.char')
vectors = Vectors(name=pretrained_embedding)
# 构建词典
TEXT.build_vocab(train, min_freq=1, vectors = vectors)

words_path = os.path.join(os.getcwd(), 'words.pkl')
with open(words_path, 'wb') as f_words:
    pickle.dump(TEXT.vocab, f_words)
    
BATCH_SIZE = 163
# 构建迭代器
train_iter = BucketIterator(
                            dataset=train,
                            batch_size=BATCH_SIZE,
                            shuffle=True,
                            sort_within_batch=False)

class TextRCNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_size, num_layers, output_size, dropout=0.5):
        super(TextRCNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        # 这里batch_first=True,只影响输入和输出。hidden与cell还是batch在第2维
        self.lstm = nn.LSTM(embedding_dim, hidden_size, num_layers, bidirectional=True, batch_first=True, dropout=dropout)
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(hidden_size*2+embedding_dim, output_size)
    
    def forward(self, x):
         # x :(batch, seq_len) = (163, 20)
        # [batch,seq_len,embedding_dim] -> (163, 20, 300)
        x = self.embedding(x)
        #out=[batch_size, seq_len, hidden_size*2]
        #h=[num_layers*2, batch_size, hidden_size]
        #c=[num_layers*2, batch_size, hidden_size]
        out,(h, c)= self.lstm(x)
        # 拼接embedding与bilstm
        out = torch.cat((x, out), 2) # [batch_size, seq_len, embedding_dim + hidden_size*2]
        # 激活
        # out = F.tanh(out)
        out = F.relu(out)
        # 维度转换 => [batch_size, embedding_dim + hidden_size*2, seq_len]
        #out = torch.transpose(out, 1, 2),一维池化针对最后一维,所以转换维度
        out = out.permute(0, 2, 1)
        out = F.max_pool1d(out, out.size(2)) 
        out = out.squeeze(-1) # [batch_size,embedding_dim + hidden_size * 2]
        out = self.dropout(out)
        out = self.fc(out) # [batch_size, output_size]
        return out
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.getcwd()+'/log', comment='textrnn')

# 训练

# 构建model
model = TextRCNN(len(TEXT.vocab), TEXT.vocab.vectors.shape[1], 128, 2, 16).to(DEVICE)
# 利用预训练模型初始化embedding,requires_grad=True,可以fine-tune
model.embedding.weight.data.copy_(TEXT.vocab.vectors)
# 训练模式
model.train()
# 优化和损失
# optimizer = torch.optim.Adam(model.parameters(),lr=0.1, weight_decay=0.1)
optimizer = torch.optim.SGD(model.parameters(),lr=0.1, momentum=0.95, nesterov=True)
criterion = nn.CrossEntropyLoss()

with writer:
    for iter in range(300):
        for i, batch in enumerate(train_iter):
            train_text = batch.text
            train_label = batch.label
            train_text = train_text.to(DEVICE)
            train_label = train_label.to(DEVICE)
            out = model(train_text)
            loss = criterion(out, train_label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if (iter+1) % 10 == 0:
                    print ('iter [{}/{}], Loss: {:.4f}'.format(iter+1, 300, loss.item()))
            #writer.add_graph(model, input_to_model=train_text,verbose=False)
            writer.add_scalar('loss',loss.item(),global_step=iter+1)
    writer.flush()
    writer.close()
            
model_path = os.path.join(os.getcwd(), "model.h5")
torch.save(model.state_dict(), model_path)

iter [10/300], Loss: 2.1661
iter [20/300], Loss: 1.3261
iter [30/300], Loss: 0.7458
iter [40/300], Loss: 0.4683
iter [50/300], Loss: 0.3658
iter [60/300], Loss: 0.3108
iter [70/300], Loss: 0.3185
iter [80/300], Loss: 0.2496
iter [90/300], Loss: 0.1554
iter [100/300], Loss: 0.1440
iter [110/300], Loss: 0.1080
iter [120/300], Loss: 0.0639
iter [130/300], Loss: 0.0405
iter [140/300], Loss: 0.0455
iter [150/300], Loss: 0.0384
iter [160/300], Loss: 0.0290
iter [170/300], Loss: 0.0266
iter [180/300], Loss: 0.0319
iter [190/300], Loss: 0.0284
iter [200/300], Loss: 0.0308
iter [210/300], Loss: 0.0114
iter [220/300], Loss: 0.0308
iter [230/300], Loss: 0.0133
iter [240/300], Loss: 0.0144
iter [250/300], Loss: 0.0254
iter [260/300], Loss: 0.0089
iter [270/300], Loss: 0.0096
iter [280/300], Loss: 0.0074
iter [290/300], Loss: 0.0082
iter [300/300], Loss: 0.0072
 
原文地址:https://www.cnblogs.com/little-horse/p/14272561.html