input子系统事件处理层(evdev)的环形缓冲区【转】

在事件处理层(evdev.c)中结构体evdev_client定义了一个环形缓冲区(circular buffer),其原理是用数组的方式实现了一个先进先出的循环队列(circular queue),用以缓存内核驱动上报给用户层的input_event事件。

struct evdev_client {
    unsigned int head;                  // 头指针
    unsigned int tail;                  // 尾指针
    unsigned int packet_head;           // 包指针
    spinlock_t buffer_lock; 
    struct fasync_struct *fasync;
    struct evdev *evdev;
    struct list_head node;
    unsigned int clk_type;
    bool revoked;
    unsigned long *evmasks[EV_CNT];
    unsigned int bufsize;               // 循环队列大小
    struct input_event buffer[];        // 循环队列数组
};

evdev_client对象维护了三个偏移量:head、tail以及packet_head。head、tail作为循环队列的头尾指针记录入口与出口偏移,那么包指针packet_head有什么作用呢?

packet_head
内核驱动处理一次输入,可能上报一到多个input_event事件,为表示处理完成,会在上报这些input_event事件后再上报一次同步事件。头指针head以input_event事件为单位,记录缓冲区的入口偏移量,而包指针packet_head则以“数据包”(一到多个input_event事件)为单位,记录缓冲区的入口偏移量。

image

环形缓冲区的工作机制

  • 循环队列入队算法:
head++;
head &= bufsize - 1;
  • 循环队列出队算法:
tail++;
tail &= bufsize - 1;
  • 循环队列已满条件:
head == tail
  • 循环队列为空条件:
packet_head == tail

“求余”和“求与”
为解决头尾指针的上溢和下溢现象,使队列的元素空间可重复使用,一般循环队列的出入队算法都采用“求余”操作:
    head = (head + 1) % bufsize; // 入队
    tail = (tail + 1) % bufsize; // 出队
为避免计算代价高昂的“求余”操作,使内核运作更高效,input子系统的环形缓冲区采用了“求与”算法,这要求bufsize必须为2的幂,在后文中可以看到bufsize的值实际上是为64或者8的n倍,符合“求与”运算的要求。

环形缓冲区的构造以及初始化

用户层通过open()函数打开input设备节点时,调用过程如下:

open() -> sys_open() -> evdev_open()

在evdev_open()函数中完成了对evdev_client对象的构造以及初始化,每一个打开input设备节点的用户都在内核中维护了一个evdev_client对象,这些evdev_client对象通过evdev_attach_client()函数注册在evdev1对象的内核链表上。

image

接下来我们具体分析evdev_open()函数:

static int evdev_open(struct inode *inode, struct file *file)
{
    struct evdev *evdev = container_of(inode->i_cdev, struct evdev, cdev);
    // 1.计算环形缓冲区大小bufsize以及evdev_client对象大小size
    unsigned int bufsize = evdev_compute_buffer_size(evdev->handle.dev);
    unsigned int size = sizeof(struct evdev_client) +
                    bufsize * sizeof(struct input_event);
    struct evdev_client *client;
    int error;

    // 2. 分配内核空间
    client = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
    if (!client)
        client = vzalloc(size);
    if (!client)
        return -ENOMEM;

    client->bufsize = bufsize;
    spin_lock_init(&client->buffer_lock);
    client->evdev = evdev;

    // 3. 注册到内核链表
    evdev_attach_client(evdev, client);

    error = evdev_open_device(evdev);
    if (error)
        goto err_free_client;

    file->private_data = client;
    nonseekable_open(inode, file);

    return 0;

 err_free_client:
    evdev_detach_client(evdev, client);
    kvfree(client);
    return error;
}

在evdev_open()函数中,我们看到了evdev_client对象从构造到注册到内核链表的过程,然而它是在哪里初始化的呢?其实kzalloc()函数在分配空间的同时就通过__GFP_ZERO标志做了初始化:

static inline void *kzalloc(size_t size, gfp_t flags)
{
    return kmalloc(size, flags | __GFP_ZERO);
}

生产者/消费者模型

内核驱动与用户程序就是典型的生产者/消费者模型,内核驱动产生input_event事件,然后通过input_event()函数写入环形缓冲区,用户程序通过read()函数从环形缓冲区中获取input_event事件。
image

环形缓冲区的生产者

内核驱动作为生产者,通过input_event()上报input_event事件时,最终调用___pass_event()函数将事件写入环形缓冲区:

static void __pass_event(struct evdev_client *client,
             const struct input_event *event)
{
    // 将input_event事件存入缓冲区,队头head自增指向下一个元素空间
    client->buffer[client->head++] = *event;
    client->head &= client->bufsize - 1;

    // 当队头head与队尾tail相等时,说明缓冲区空间已满
    if (unlikely(client->head == client->tail)) {
        /*
         * This effectively "drops" all unconsumed events, leaving
         * EV_SYN/SYN_DROPPED plus the newest event in the queue.
         */
        client->tail = (client->head - 2) & (client->bufsize - 1);

        client->buffer[client->tail].time = event->time;
        client->buffer[client->tail].type = EV_SYN;
        client->buffer[client->tail].code = SYN_DROPPED;
        client->buffer[client->tail].value = 0;

        client->packet_head = client->tail;
    }

    // 当遇到EV_SYN/SYN_REPORT同步事件时,packet_head移动到队头head位置
    if (event->type == EV_SYN && event->code == SYN_REPORT) {
        client->packet_head = client->head;
        kill_fasync(&client->fasync, SIGIO, POLL_IN);
    }
}

环形缓冲区的消费者

用户程序作为消费者,通过read()函数读取input设备节点时,最终在内核调用evdev_fetch_next_event()函数从环形缓冲区中读取input_event事件:

static int evdev_fetch_next_event(struct evdev_client *client,
                  struct input_event *event)
{
    int have_event;

    spin_lock_irq(&client->buffer_lock);

    // 判缓冲区中是否有input_event事件
    have_event = client->packet_head != client->tail;
    if (have_event) {
    // 从缓冲区中读取一次input_event事件,队尾tail自增指向下一个元素空间
        *event = client->buffer[client->tail++];
        client->tail &= client->bufsize - 1;
        if (client->use_wake_lock &&
            client->packet_head == client->tail)
            wake_unlock(&client->wake_lock);
    }

    spin_unlock_irq(&client->buffer_lock);

    return have_event;
}
原文地址:https://www.cnblogs.com/linhaostudy/p/8760483.html