Python面向对象

实例属性和类属性
给实例绑定属性的方法是通过实例变量,或者通过self变量:
class Student(object):
    def __init__(self, name):
        self.name = name

s = Student('Bob')
s.score = 90

但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:
class Student(object):
    name = 'Student'
    
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object):
...     name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student 


访问限制
在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。
但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的name、score属性:

>>> bart = Student('Bart Simpson', 59)
>>> bart.score
59
>>> bart.score = 99
>>> bart.score
99

如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,
在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,
所以,我们把Student类改一改:
class Student(object):
    def __init__(self, name, score):
        self.__name = name
        self.__score = score

    def print_score(self):
        print('%s: %s' % (self.__name, self.__score))
        
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name和实例变量.__score了>>> bart = Student('Bart Simpson', 59)
>>> bart.__name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name和get_score这样的方法:
class Student(object):
    ...

    def get_name(self):
        return self.__name

    def get_score(self):
        return self.__score
        
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score方法:
class Student(object):
    ...
    def set_score(self, score):
        self.__score = score
        
你也许会问,原先那种直接通过bart.score = 99也可以修改啊,为什么要定义一个方法大费周折?
因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object):
    ...
    def set_score(self, score):
        if 0 <= score <= 100:
            self.__score = score
        else:
            raise ValueError('bad score')
            
需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,
特殊变量是可以直接访问的,不是private变量,所以,不能用__name__、__score__这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,
但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。
不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,
仍然可以通过_Student__name来访问__name变量:

>>> bart._Student__name
'Bart Simpson'

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

最后注意下面的这种错误写法:
>>> bart = Student('Bart Simpson', 59)
>>> bart.get_name()
'Bart Simpson'
>>> bart.__name = 'New Name' # 设置__name变量!
>>> bart.__name
'New Name'

表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!
内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

>>> bart.get_name() # get_name()内部返回self.__name
'Bart Simpson'



实例方法、类方法、静态方法区别
一、关于参数的区别
实例方法:定义实例方法是最少有一个形参 ---> 实例对象,通常用 self
类方法:定义类方法的时候最少有一个形参 ---> 类对象,通常用 cls
静态方法:定义静态方法的时候可以不定义形参

二、关于方法定义时候添加装饰器的区别
实例方法:不需要添加装饰器
类方法:需要添加装饰器 ----> @classmethod
静态方法:需要添加装饰器 ---> @staticmethod

三、调用:
1.实例方法可以通过对象直接调用
2.但是用类名调用的时候,需要创建一个对象,并且在传递参数的时候要将对象传递进去
3.类方法可以通过类名直接调用,也可以通过对象来调用
4.静态方法可以通过类名直接调用,也可以通过对象来调用

四、补充
1.静态方法不可以继承  
2.类方法不能访问实例变量,只能访问类变量



类的组合
组合:组合指的是,在一个类中以另外一个类的对象(也就是实例)作为数据属性,称为类的组合
也就是说:一个类的属性是另一个类的对象,就是组合

圆环使用案例:
from math import pi

class Circle:
    '''
    定义了一个圆形类;
    提供计算面积(area)和周长(perimeter)的方法
    '''
    def __init__(self,radius):
        self.radius = radius

    def area(self):
         return pi * self.radius * self.radius

    def perimeter(self):
        return 2 * pi *self.radius


circle =  Circle(10) #实例化一个圆
area1 = circle.area() #计算圆面积
per1 = circle.perimeter() #计算圆周长
print(area1,per1) #打印圆面积和周长

class Ring:
    '''
    定义了一个圆环类
    提供圆环的面积和周长的方法
    '''
    def __init__(self,radius_outside,radius_inside):
        self.outsid_circle = Circle(radius_outside)
        self.inside_circle = Circle(radius_inside)

    def area(self):
        return self.outsid_circle.area() - self.inside_circle.area()

    def perimeter(self):
        return  self.outsid_circle.perimeter() + self.inside_circle.perimeter()


ring = Ring(10,5) #实例化一个环形
print(ring.perimeter()) #计算环形的周长
print(ring.area()) #计算环形的面积



继承和多态
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),
而被继承的class称为基类、父类或超类(Base class、Super class)。
比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:
class Animal(object):
    def run(self):
        print('Animal is running...')
        
当我们需要编写Dog和Cat类时,就可以直接从Animal类继承:
class Dog(Animal):
    pass

class Cat(Animal):
    pass
    
对于Dog来说,Animal就是它的父类,对于Animal来说,Dog就是它的子类。Cat和Dog类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,
因此,Dog和Cat作为它的子类,什么事也没干,就自动拥有了run()方法:
dog = Dog()
dog.run()

cat = Cat()
cat.run()

运行结果如下:
Animal is running...
Animal is running...

当然,也可以对子类增加一些方法,比如Dog类:
class Dog(Animal):

    def run(self):
        print('Dog is running...')

    def eat(self):
        print('Eating meat...')
        
继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog还是Cat,它们run()的时候,显示的都是Animal is running...,
符合逻辑的做法是分别显示Dog is running...和Cat is running...,因此,对Dog和Cat类改进如下:
class Dog(Animal):

    def run(self):
        print('Dog is running...')

class Cat(Animal):

    def run(self):
        print('Cat is running...')
        
再次运行,结果如下:
Dog is running...
Cat is running...

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。
这样,我们就获得了继承的另一个好处:多态。
要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。
我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型

判断一个变量是否是某个类型可以用isinstance()判断:
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True

看来a、b、c确实对应着list、Animal、Dog这3种类型。
但是等等,试试:
>>> isinstance(c, Animal)
True

看来c不仅仅是Dog,c还是Animal!
不过仔细想想,这是有道理的,因为Dog是从Animal继承下来的,当我们创建了一个Dog的实例c时,
我们认为c的数据类型是Dog没错,但c同时也是Animal也没错,Dog本来就是Animal的一种!

所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:

>>> b = Animal()
>>> isinstance(b, Dog)
False

Dog可以看成Animal,但Animal不可以看成Dog。
要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal类型的变量:
def run_twice(animal):
    animal.run()
    animal.run()
当我们传入Animal的实例时,run_twice()就打印出:

>>> run_twice(Animal())
Animal is running...
Animal is running...
当我们传入Dog的实例时,run_twice()就打印出:

>>> run_twice(Dog())
Dog is running...
Dog is running...
当我们传入Cat的实例时,run_twice()就打印出:

>>> run_twice(Cat())
Cat is running...
Cat is running...
看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise类型,也从Animal派生:

class Tortoise(Animal):
    def run(self):
        print('Tortoise is running slowly...')
当我们调用run_twice()时,传入Tortoise的实例:

>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...

你会发现,新增一个Animal的子类,不必对run_twice()做任何修改,实际上,任何依赖Animal作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。
多态的好处就是,当我们需要传入Dog、Cat、Tortoise……时,我们只需要接收Animal类型就可以了,
因为Dog、Cat、Tortoise……都是Animal类型,然后,按照Animal类型进行操作即可。由于Animal类型有run()方法,
因此,传入的任意类型,只要是Animal类或者子类,就会自动调用实际类型的run()方法,这就是多态的意思:

对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()方法,
而具体调用的run()方法是作用在Animal、Dog、Cat还是Tortoise对象上,由运行时该对象的确切类型决定,
这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()方法编写正确,不用管原来的代码是如何调用的。
这就是著名的“开闭”原则:
对扩展开放:允许新增Animal子类;
对修改封闭:不需要修改依赖Animal类型的run_twice()等函数。


 
面向对象之继承
1.子类可以使用父类的所有属性和方法
2.如果子类有自己的方法,就执行自己的;如果子类没有自己的方法,就会找父类的。

3.如果子类里面没有找到,父类里也没有找到,就会报错

4.如果子类中实现了调用父类的方法
方法一:父类名.父类方法()
class Vehicle: #定义交通工具类
     Country='China'
     def __init__(self,name,speed,load,power):
         self.name=name
         self.speed=speed
         self.load=load
         self.power=power

     def run(self):
         print('开动啦...')

class Subway(Vehicle): #地铁
    def __init__(self,name,speed,load,power,line):
        Vehicle.__init__(self,name,speed,load,power)
        self.line=line

    def run(self):
        print('地铁%s号线欢迎您' %self.line)
        Vehicle.run(self)

line13=Subway('中国地铁','180m/s','1000人/箱','',13)
line13.run()

方法二:super()
class Vehicle: #定义交通工具类
     Country='China'
     def __init__(self,name,speed,load,power):
         self.name=name
         self.speed=speed
         self.load=load
         self.power=power

     def run(self):
         print('开动啦...')

class Subway(Vehicle): #地铁
    def __init__(self,name,speed,load,power,line):
        super().__init__(name,speed,load,power)
        self.line=line

    def run(self):
        print('地铁%s号线欢迎您' %self.line)
        super(Subway,self).run()

line13=Subway('中国地铁','180m/s','1000人/箱','',13)
line13.run()

在类内:super(子类,self).方法名()  supper().__init__(参数)
在类外:super(子类名,对象名).方法名()


5.多继承
当类是经典类时,多继承情况下,会按照深度优先顺序去查找
当类时新式类时,多继承情况下,会按照广度优先顺序去查找
class A(object):
    def test(self):
        print('from A')

class B(A):
    def test(self):
        print('from B')

class C(A):
    def test(self):
        print('from C')

class D(B):
    def test(self):
        print('from D')

class E(C):
    def test(self):
        print('from E')

class F(D,E):
    # def test(self):
    #     print('from F')
    pass
f1=F()
f1.test()
print (F.mro()) #只有新式才有这个属性可以查看线性列表,经典类没有这个属性

新式类继承顺序:F->D->B->E->C->A
经典类继承顺序:F->D->B->A->E->C
python3中统一都是新式类
pyhon2中才分新式类与经典类

新式类所有基类的线性顺序列表:
F.mro() 



python之反射
python面向对象中的反射:通过字符串的形式操作对象相关的属性。
python中的一切事物都是对象(都可以使用反射)

hasattr(object,name)   判断object中有没有一个name字符串对应的方法或属性
getattr(object, name, default=None)
setattr(x, y, v) 
delattr(x, y) 


四个方法的使用演示
class Foo:
    f = '类的静态变量'
    def __init__(self,name,age):
        self.name=name
        self.age=age

    def say_hi(self):
        print('hi,%s'%self.name)

obj=Foo('egon',73)

#检测是否含有某属性
print(hasattr(obj,'name'))
print(hasattr(obj,'say_hi'))

#获取属性
n=getattr(obj,'name')
print(n)
func=getattr(obj,'say_hi')
func()

print(getattr(obj,'aaaaaaaa','不存在啊')) #报错

#设置属性
setattr(obj,'sb',True)
setattr(obj,'show_name',lambda self:self.name+'sb')
print(obj.__dict__)
print(obj.show_name(obj))

#删除属性
delattr(obj,'age')
delattr(obj,'show_name')
delattr(obj,'show_name111')#不存在,则报错

print(obj.__dict__)

反射的好处就是,可以事先定义好接口,接口只有在被完成后才会真正执行,这实现了即插即用,这其实是一种‘后期绑定’。
可以事先把主要的逻辑写好(只定义接口),然后后期再去实现接口的功能
范例:
还没有实现全部功能
class FtpClient:
    'ftp客户端,但是还么有实现具体的功能'
    def __init__(self,addr):
        print('正在连接服务器[%s]' %addr)
        self.addr=addr
  
不影响下面代码的编写  
#from module import FtpClient
f1=FtpClient('192.168.1.1')
if hasattr(f1,'get'):
    func_get=getattr(f1,'get')
    func_get()
else:
    print('---->不存在此方法')
    print('处理其他的逻辑')


使用__slots__
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:
class Student(object):
    pass
    
然后,尝试给实例绑定一个属性:
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael

还可以尝试给实例绑定一个方法:
>>> def set_age(self, age): # 定义一个函数作为实例方法
...     self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

>>> def set_score(self, score):
...     self.score = score
...
>>> Student.set_score = set_score

给class绑定方法后,所有实例均可调用:
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:
class Student(object):
    __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
    
然后,我们试试:
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。
使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:
>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999
除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__。



使用@property
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:
class Student(object):

    def get_score(self):
         return self._score

    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value
        
现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。
Python内置的@property装饰器就是负责把一个方法变成属性调用的:
class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value
        
@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,
此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

class Student(object):

    @property
    def birth(self):
        return self._birth

    @birth.setter
    def birth(self, value):
        self._birth = value

    @property
    def age(self):
        return 2015 - self._birth
        
上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。



isinstance(obj,cls)和issubclass(sub,super)
isinstance(obj,cls)检查是否obj是否是类 cls 的对象
class Foo(object):
    pass
 
obj = Foo()
 
isinstance(obj, Foo)

issubclass(sub, super)检查sub类是否是 super 类的派生类
class Foo(object):
    pass
 
class Bar(Foo):
    pass
issubclass(Bar, Foo)



__setattr__,__delattr__,__getattr__

class Foo:
    x=1
    def __init__(self,y):
        self.y=y

    def __getattr__(self, item):
        print('----> from getattr:你找的属性不存在')


    def __setattr__(self, key, value):
        print('----> from setattr')
        # self.key=value #这就无限递归了 
        # self.__dict__[key]=value #应该使用它

    def __delattr__(self, item):
        print('----> from delattr')
        # del self.item #无限递归了
        self.__dict__.pop(item)

#__setattr__添加/修改属性会触发它的执行
f1=Foo(10)
print(f1.__dict__) # 因为你重写了__setattr__,凡是赋值操作都会触发它的运行,你啥都没写,就是根本没赋值,除非你直接操作属性字典,否则永远无法赋值
f1.z=3
print(f1.__dict__)

#__delattr__删除属性的时候会触发
f1.__dict__['a']=3#我们可以直接修改属性字典,来完成添加/修改属性的操作
del f1.a
print(f1.__dict__)

#__getattr__只有在使用点调用属性且属性不存在的时候才会触发
f1.xxxxxx



__getattribute__

当只有 __getattr__

class Foo:
    def __init__(self,x):
        self.x=x

    def __getattr__(self, item):
        print('执行的是我')
        # return self.__dict__[item]

f1=Foo(10)
print(f1.x)
f1.xxxxxx #不存在的属性访问,触发__getattr__


当只有 __getattribute__

class Foo:
    def __init__(self,x):
        self.x=x

    def __getattribute__(self, item):
        print('不管是否存在,我都会执行')

f1=Foo(10)
f1.x
f1.xxxxxx


当__getattr__ 和 __getattribute__ 同时出现

class Foo:
    def __init__(self,x):
        self.x=x

    def __getattr__(self, item):
        print('执行的是我')
        # return self.__dict__[item]
    def __getattribute__(self, item):
        print('不管是否存在,我都会执行')
        raise AttributeError('哈哈')

f1=Foo(10)
f1.x
f1.xxxxxx

#当__getattribute__与__getattr__同时存在,只会执行__getattrbute__,除非__getattribute__在执行过程中抛出异常AttributeError



__setitem__,__getitem,__delitem__

class Foo:
    def __init__(self,name):
        self.name=name

    def __getitem__(self, item):
        print(self.__dict__[item])

    def __setitem__(self, key, value):
        self.__dict__[key]=value
    def __delitem__(self, key):
        print('del obj[key]时,我执行')
        self.__dict__.pop(key)
    def __delattr__(self, item):
        print('del obj.key时,我执行')
        self.__dict__.pop(item)

f1=Foo('sb')
f1['age']=18
f1['age1']=19
del f1.age1
del f1['age']
f1['name']='alex'
print(f1.__dict__)



__str__,__repr__,__format__
改变对象的字符串显示__str__,__repr__
自定制格式化字符串__format__
format_dict={
    'nat':'{obj.name}-{obj.addr}-{obj.type}',#学校名-学校地址-学校类型
    'tna':'{obj.type}:{obj.name}:{obj.addr}',#学校类型:学校名:学校地址
    'tan':'{obj.type}/{obj.addr}/{obj.name}',#学校类型/学校地址/学校名
}
class School:
    def __init__(self,name,addr,type):
        self.name=name
        self.addr=addr
        self.type=type

    def __repr__(self):
        return 'School(%s,%s)' %(self.name,self.addr)
    def __str__(self):
        return '(%s,%s)' %(self.name,self.addr)

    def __format__(self, format_spec):
        # if format_spec
        if not format_spec or format_spec not in format_dict:
            format_spec='nat'
        fmt=format_dict[format_spec]
        return fmt.format(obj=self)

s1=School('oldboy1','北京','私立')
print('from repr: ',repr(s1))
print('from str: ',str(s1))
print(s1)

'''
str函数或者print函数--->obj.__str__()
repr或者交互式解释器--->obj.__repr__()
如果__str__没有被定义,那么就会使用__repr__来代替输出
注意:这俩方法的返回值必须是字符串,否则抛出异常
'''
print(format(s1,'nat'))
print(format(s1,'tna'))
print(format(s1,'tan'))
print(format(s1,'asfdasdffd'))


关于 __format__ 的范例

date_dic={
    'ymd':'{0.year}:{0.month}:{0.day}',
    'dmy':'{0.day}/{0.month}/{0.year}',
    'mdy':'{0.month}-{0.day}-{0.year}',
}
class Date:
    def __init__(self,year,month,day):
        self.year=year
        self.month=month
        self.day=day

    def __format__(self, format_spec):
        if not format_spec or format_spec not in date_dic:
            format_spec='ymd'
        fmt=date_dic[format_spec]
        return fmt.format(self)

d1=Date(2016,12,29)
print(format(d1))
print('{:mdy}'.format(d1))



__call__
对象后面加括号,触发执行。

注:构造方法的执行是由创建对象触发的,即:对象 = 类名()
而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

class Foo:

    def __init__(self):
        pass
    
    def __call__(self, *args, **kwargs):

        print('__call__')


obj = Foo() # 执行 __init__
obj()       # 执行 __call__



__module__和__class__

__module__    表示当前操作的对象在那个模块
__class__     表示当前操作的对象的类是什么

lib/aa.py 文件
class C:

    def __init__(self):
        self.name = 'from lib/aaa.py'
        
另外的文件        
from lib.aa import C

obj = C()
print obj.__module__  # 输出 lib.aa,即:输出模块
print obj.__class__      # 输出 lib.aa.C,即:输出类



类的描述信息 __doc__

类的描述信息
class Foo:
    '我是描述信息'
    pass

class Bar(Foo):
    pass
print(Bar.__doc__) #该属性无法继承给子类



析构方法 __del__

析构方法,当对象在内存中被释放时,自动触发执行。
注:如果产生的对象仅仅只是python程序级别的(用户级),那么无需定义__del__,如果产生的对象的同时还会向操作系统发起系统调用,
即一个对象有用户级与内核级两种资源,比如(打开一个文件,创建一个数据库链接),则必须在清除对象的同时回收系统资源,这就用到了__del__

范例1.
class Foo:

    def __del__(self):
        print('执行我啦')

f1=Foo()
del f1
print('------->')

#输出结果
执行我啦
------->


范例2.
class Foo:

    def __del__(self):
        print('执行我啦')

f1=Foo()
# del f1
print('------->')

#输出结果
------->
执行我啦


典型的应用场景:

创建数据库类,用该类实例化出数据库链接对象,对象本身是存放于用户空间内存中,而链接则是由操作系统管理的,存放于内核空间内存中
当程序结束时,python只会回收自己的内存空间,即用户态内存,而操作系统的资源则没有被回收,
这就需要我们定制__del__,在对象被删除前向操作系统发起关闭数据库链接的系统调用,回收资源
这与文件处理是一个道理:

f=open('a.txt') #做了两件事,在用户空间拿到一个f变量,在操作系统内核空间打开一个文件
del f #只回收用户空间的f,操作系统的文件还处于打开状态

#所以我们应该在del f之前保证f.close()执行,即便是没有del,程序执行完毕也会自动del清理资源,于是文件操作的正确用法应该是
f=open('a.txt')
读写...
f.close()
很多情况下大家都容易忽略f.close,这就用到了with上下文管理



__enter__和__exit__

好处:
1.使用with语句的目的就是把代码块放入with中执行,with结束后,自动完成清理工作,无须手动干预
2.在需要管理一些资源比如文件,网络连接和锁的编程环境中,可以在__exit__中定制自动释放资源的机制,你无须再去关系这个问题,这将大有用处

我们知道在操作文件对象的时候可以这么写
with open('a.txt') as f:
  '代码块'

上述叫做上下文管理协议,即with语句,为了让一个对象兼容with语句,必须在这个对象的类中声明__enter__和__exit__方法

class Open:
    def __init__(self,name):
        self.name=name

    def __enter__(self):
        print('出现with语句,对象的__enter__被触发,有返回值则赋值给as声明的变量')
        
    def __exit__(self, exc_type, exc_val, exc_tb):
        print('with中代码块执行完毕时执行我啊')


with Open('a.txt') as f:
    print('=====>执行代码块')
    # print(f,f.name)

    
__exit__()中的三个参数分别代表异常类型,异常值和追溯信息,with语句中代码块出现异常,则with后的代码都无法执行


class Open:
    def __init__(self,name):
        self.name=name

    def __enter__(self):
        print('出现with语句,对象的__enter__被触发,有返回值则赋值给as声明的变量')

    def __exit__(self, exc_type, exc_val, exc_tb):
        print('with中代码块执行完毕时执行我啊')
        print(exc_type)
        print(exc_val)
        print(exc_tb)



with Open('a.txt') as f:
    print('=====>执行代码块')
    raise AttributeError('***着火啦,救火啊***')
print('0'*100) #------------------------------->不会执行


如果__exit()返回值为True,那么异常会被清空,就好像啥都没发生一样,with后的语句正常执行

class Open:
    def __init__(self,name):
        self.name=name

    def __enter__(self):
        print('出现with语句,对象的__enter__被触发,有返回值则赋值给as声明的变量')

    def __exit__(self, exc_type, exc_val, exc_tb):
        print('with中代码块执行完毕时执行我啊')
        print(exc_type)
        print(exc_val)
        print(exc_tb)
        return True



with Open('a.txt') as f:
    print('=====>执行代码块')
    raise AttributeError('***着火啦,救火啊***')
print('0'*100) #------------------------------->会执行



__next__和__iter__实现迭代器协议

class Foo:
    def __init__(self,x):
        self.x=x

    def __iter__(self):
        return self

    def __next__(self):
        n=self.x
        self.x+=1
        return self.x

f=Foo(3)
for i in f:
    print(i)
    
    
class Foo:
    def __init__(self,start,stop):
        self.num=start
        self.stop=stop
    def __iter__(self):
        return self
    def __next__(self):
        if self.num >= self.stop:
            raise StopIteration
        n=self.num
        self.num+=1
        return n

f=Foo(1,5)
from collections import Iterable,Iterator
print(isinstance(f,Iterator))

for i in Foo(1,5):
    print(i) 
    
    
    
描述符(__get__,__set__,__delete__)

1 描述符是什么:描述符本质就是一个新式类,在这个新式类中,至少实现了__get__(),__set__(),__delete__()中的一个,这也被称为描述符协议
__get__():调用一个属性时,触发
__set__():为一个属性赋值时,触发
__delete__():采用del删除属性时,触发

 

class Foo: #在python3中Foo是新式类,它实现了三种方法,这个类就被称作一个描述符
    def __get__(self, instance, owner):
        pass
    def __set__(self, instance, value):
        pass
    def __delete__(self, instance):
        pass


2 描述符是干什么的:描述符的作用是用来代理另外一个类的属性的(必须把描述符定义成这个类的类属性,不能定义到构造函数中)

class Foo:
    def __get__(self, instance, owner):
        print('触发get')
    def __set__(self, instance, value):
        print('触发set')
    def __delete__(self, instance):
        print('触发delete')

#包含这三个方法的新式类称为描述符,由这个类产生的实例进行属性的调用/赋值/删除,并不会触发这三个方法
f1=Foo()
f1.name='egon'
f1.name
del f1.name
#疑问:何时,何地,会触发这三个方法的执行



 


#描述符Str
class Str:
    def __get__(self, instance, owner):
        print('Str调用')
    def __set__(self, instance, value):
        print('Str设置...')
    def __delete__(self, instance):
        print('Str删除...')

#描述符Int
class Int:
    def __get__(self, instance, owner):
        print('Int调用')
    def __set__(self, instance, value):
        print('Int设置...')
    def __delete__(self, instance):
        print('Int删除...')

class People:
    name=Str()
    age=Int()
    def __init__(self,name,age): #name被Str类代理,age被Int类代理,
        self.name=name
        self.age=age

#何地?:定义成另外一个类的类属性

#何时?:且看下列演示

p1=People('alex',18)

#描述符Str的使用
p1.name
p1.name='egon'
del p1.name

#描述符Int的使用
p1.age
p1.age=18
del p1.age

#我们来瞅瞅到底发生了什么
print(p1.__dict__)
print(People.__dict__)

#补充
print(type(p1) == People) #type(obj)其实是查看obj是由哪个类实例化来的
print(type(p1).__dict__ == People.__dict__)



3 描述符分两种
一 数据描述符:至少实现了__get__()和__set__()

class Foo:
    def __set__(self, instance, value):
        print('set')
    def __get__(self, instance, owner):
        print('get')

二 非数据描述符:没有实现__set__()

class Foo:
    def __get__(self, instance, owner):
        print('get')

 

4 注意事项:
一 描述符本身应该定义成新式类,被代理的类也应该是新式类
二 必须把描述符定义成这个类的类属性,不能为定义到构造函数中
三 要严格遵循该优先级,优先级由高到底分别是
1.类属性
2.数据描述符
3.实例属性
4.非数据描述符
5.找不到的属性触发__getattr__()

 

#描述符Str
class Str:
    def __get__(self, instance, owner):
        print('Str调用')
    def __set__(self, instance, value):
        print('Str设置...')
    def __delete__(self, instance):
        print('Str删除...')

class People:
    name=Str()
    def __init__(self,name,age): #name被Str类代理,age被Int类代理,
        self.name=name
        self.age=age


#基于上面的演示,我们已经知道,在一个类中定义描述符它就是一个类属性,存在于类的属性字典中,而不是实例的属性字典

#那既然描述符被定义成了一个类属性,直接通过类名也一定可以调用吧,没错
People.name #恩,调用类属性name,本质就是在调用描述符Str,触发了__get__()

People.name='egon' #那赋值呢,我去,并没有触发__set__()
del People.name #赶紧试试del,我去,也没有触发__delete__()
#结论:描述符对类没有作用-------->傻逼到家的结论

'''
原因:描述符在使用时被定义成另外一个类的类属性,因而类属性比二次加工的描述符伪装而来的类属性有更高的优先级
People.name #恩,调用类属性name,找不到就去找描述符伪装的类属性name,触发了__get__()

People.name='egon' #那赋值呢,直接赋值了一个类属性,它拥有更高的优先级,相当于覆盖了描述符,肯定不会触发描述符的__set__()
del People.name #同上
'''



#描述符Str
class Str:
    def __get__(self, instance, owner):
        print('Str调用')
    def __set__(self, instance, value):
        print('Str设置...')
    def __delete__(self, instance):
        print('Str删除...')

class People:
    name=Str()
    def __init__(self,name,age): #name被Str类代理,age被Int类代理,
        self.name=name
        self.age=age


p1=People('egon',18)

#如果描述符是一个数据描述符(即有__get__又有__set__),那么p1.name的调用与赋值都是触发描述符的操作,于p1本身无关了,相当于覆盖了实例的属性
p1.name='egonnnnnn'
p1.name
print(p1.__dict__)#实例的属性字典中没有name,因为name是一个数据描述符,优先级高于实例属性,查看/赋值/删除都是跟描述符有关,与实例无关了
del p1.name


class Foo:
    def func(self):
        print('我胡汉三又回来了')
f1=Foo()
f1.func() #调用类的方法,也可以说是调用非数据描述符
#函数是一个非数据描述符对象(一切皆对象么)
print(dir(Foo.func))
print(hasattr(Foo.func,'__set__'))
print(hasattr(Foo.func,'__get__'))
print(hasattr(Foo.func,'__delete__'))
#有人可能会问,描述符不都是类么,函数怎么算也应该是一个对象啊,怎么就是描述符了
#笨蛋哥,描述符是类没问题,描述符在应用的时候不都是实例化成一个类属性么
#函数就是一个由非描述符类实例化得到的对象
#没错,字符串也一样


f1.func='这是实例属性啊'
print(f1.func)

del f1.func #删掉了非数据
f1.func()


class Foo:
    def __set__(self, instance, value):
        print('set')
    def __get__(self, instance, owner):
        print('get')
class Room:
    name=Foo()
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length


#name是一个数据描述符,因为name=Foo()而Foo实现了get和set方法,因而比实例属性有更高的优先级
#对实例的属性操作,触发的都是描述符的
r1=Room('厕所',1,1)
r1.name
r1.name='厨房'


class Foo:
    def __get__(self, instance, owner):
        print('get')
class Room:
    name=Foo()
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length


#name是一个非数据描述符,因为name=Foo()而Foo没有实现set方法,因而比实例属性有更低的优先级
#对实例的属性操作,触发的都是实例自己的
r1=Room('厕所',1,1)
r1.name
r1.name='厨房'



class Foo:
    def func(self):
        print('我胡汉三又回来了')

    def __getattr__(self, item):
        print('找不到了当然是来找我啦',item)
f1=Foo()

f1.xxxxxxxxxxx



5 描述符使用

众所周知,python是弱类型语言,即参数的赋值没有类型限制,下面我们通过描述符机制来实现类型限制功能

class Str:
    def __init__(self,name):
        self.name=name
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)


class People:
    name=Str('name')
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

p1=People('egon',18,3231.3)

#调用
print(p1.__dict__)
p1.name

#赋值
print(p1.__dict__)
p1.name='egonlin'
print(p1.__dict__)

#删除
print(p1.__dict__)
del p1.name
print(p1.__dict__)


class Str:
    def __init__(self,name):
        self.name=name
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)


class People:
    name=Str('name')
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

#疑问:如果我用类名去操作属性呢
People.name #报错,错误的根源在于类去操作属性时,会把None传给instance

#修订__get__方法
class Str:
    def __init__(self,name):
        self.name=name
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        if instance is None:
            return self
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)


class People:
    name=Str('name')
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary
print(People.name) #完美,解决



class Str:
    def __init__(self,name,expected_type):
        self.name=name
        self.expected_type=expected_type
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        if instance is None:
            return self
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        if not isinstance(value,self.expected_type): #如果不是期望的类型,则抛出异常
            raise TypeError('Expected %s' %str(self.expected_type))
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)


class People:
    name=Str('name',str) #新增类型限制str
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

p1=People(123,18,3333.3)#传入的name因不是字符串类型而抛出异常


class Typed:
    def __init__(self,name,expected_type):
        self.name=name
        self.expected_type=expected_type
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        if instance is None:
            return self
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        if not isinstance(value,self.expected_type):
            raise TypeError('Expected %s' %str(self.expected_type))
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)


class People:
    name=Typed('name',str)
    age=Typed('name',int)
    salary=Typed('name',float)
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

p1=People(123,18,3333.3)
p1=People('egon','18',3333.3)
p1=People('egon',18,3333)



大刀阔斧之后我们已然能实现功能了,但是问题是,如果我们的类有很多属性,你仍然采用在定义一堆类属性的方式去实现,low,这时候我需要教你一招:独孤九剑


def decorate(cls):
    print('类的装饰器开始运行啦------>')
    return cls

@decorate #无参:People=decorate(People)
class People:
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

p1=People('egon',18,3333.3)


def typeassert(**kwargs):
    def decorate(cls):
        print('类的装饰器开始运行啦------>',kwargs)
        return cls
    return decorate
@typeassert(name=str,age=int,salary=float) #有参:1.运行typeassert(...)返回结果是decorate,此时参数都传给kwargs 2.People=decorate(People)
class People:
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

p1=People('egon',18,3333.3)


终极大招
 

class Typed:
    def __init__(self,name,expected_type):
        self.name=name
        self.expected_type=expected_type
    def __get__(self, instance, owner):
        print('get--->',instance,owner)
        if instance is None:
            return self
        return instance.__dict__[self.name]

    def __set__(self, instance, value):
        print('set--->',instance,value)
        if not isinstance(value,self.expected_type):
            raise TypeError('Expected %s' %str(self.expected_type))
        instance.__dict__[self.name]=value
    def __delete__(self, instance):
        print('delete--->',instance)
        instance.__dict__.pop(self.name)

def typeassert(**kwargs):
    def decorate(cls):
        print('类的装饰器开始运行啦------>',kwargs)
        for name,expected_type in kwargs.items():
            setattr(cls,name,Typed(name,expected_type))
        return cls
    return decorate
@typeassert(name=str,age=int,salary=float) #有参:1.运行typeassert(...)返回结果是decorate,此时参数都传给kwargs 2.People=decorate(People)
class People:
    def __init__(self,name,age,salary):
        self.name=name
        self.age=age
        self.salary=salary

print(People.__dict__)
p1=People('egon',18,3333.3)



6 描述符总结

描述符是可以实现大部分python类特性中的底层魔法,包括@classmethod,@staticmethd,@property甚至是__slots__属性

描述父是很多高级库和框架的重要工具之一,描述符通常是使用到装饰器或者元类的大型框架中的一个组件.

7 利用描述符原理完成一个自定制@property,实现延迟计算(本质就是把一个函数属性利用装饰器原理做成一个描述符:类的属性字典中函数名为key,value为描述符类产生的对象)

class Room:
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length

    @property
    def area(self):
        return self.width * self.length

r1=Room('alex',1,1)
print(r1.area)



class Lazyproperty:
    def __init__(self,func):
        self.func=func
    def __get__(self, instance, owner):
        print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
        if instance is None:
            return self
        return self.func(instance) #此时你应该明白,到底是谁在为你做自动传递self的事情

class Room:
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length

    @Lazyproperty #area=Lazyproperty(area) 相当于定义了一个类属性,即描述符
    def area(self):
        return self.width * self.length

r1=Room('alex',1,1)
print(r1.area)



class Lazyproperty:
    def __init__(self,func):
        self.func=func
    def __get__(self, instance, owner):
        print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
        if instance is None:
            return self
        else:
            print('--->')
            value=self.func(instance)
            setattr(instance,self.func.__name__,value) #计算一次就缓存到实例的属性字典中
            return value

class Room:
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length

    @Lazyproperty #area=Lazyproperty(area) 相当于'定义了一个类属性,即描述符'
    def area(self):
        return self.width * self.length

r1=Room('alex',1,1)
print(r1.area) #先从自己的属性字典找,没有再去类的中找,然后出发了area的__get__方法
print(r1.area) #先从自己的属性字典找,找到了,是上次计算的结果,这样就不用每执行一次都去计算




#缓存不起来了

class Lazyproperty:
    def __init__(self,func):
        self.func=func
    def __get__(self, instance, owner):
        print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
        if instance is None:
            return self
        else:
            value=self.func(instance)
            instance.__dict__[self.func.__name__]=value
            return value
        # return self.func(instance) #此时你应该明白,到底是谁在为你做自动传递self的事情
    def __set__(self, instance, value):
        print('hahahahahah')

class Room:
    def __init__(self,name,width,length):
        self.name=name
        self.width=width
        self.length=length

    @Lazyproperty #area=Lazyproperty(area) 相当于定义了一个类属性,即描述符
    def area(self):
        return self.width * self.length

print(Room.__dict__)
r1=Room('alex',1,1)
print(r1.area)
print(r1.area) 
print(r1.area) 
print(r1.area) #缓存功能失效,每次都去找描述符了,为何,因为描述符实现了set方法,它由非数据描述符变成了数据描述符,数据描述符比实例属性有更高的优先级,因而所有的属性操作都去找描述符了


 
8 利用描述符原理完成一个自定制@classmethod

class ClassMethod:
    def __init__(self,func):
        self.func=func

    def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
        def feedback():
            print('在这里可以加功能啊...')
            return self.func(owner)
        return feedback

class People:
    name='linhaifeng'
    @ClassMethod # say_hi=ClassMethod(say_hi)
    def say_hi(cls):
        print('你好啊,帅哥 %s' %cls.name)

People.say_hi()

p1=People()
p1.say_hi()
#疑问,类方法如果有参数呢,好说,好说

class ClassMethod:
    def __init__(self,func):
        self.func=func

    def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
        def feedback(*args,**kwargs):
            print('在这里可以加功能啊...')
            return self.func(owner,*args,**kwargs)
        return feedback

class People:
    name='linhaifeng'
    @ClassMethod # say_hi=ClassMethod(say_hi)
    def say_hi(cls,msg):
        print('你好啊,帅哥 %s %s' %(cls.name,msg))

People.say_hi('你是那偷心的贼')

p1=People()
p1.say_hi('你是那偷心的贼')



9 利用描述符原理完成一个自定制的@staticmethod

class StaticMethod:
    def __init__(self,func):
        self.func=func

    def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
        def feedback(*args,**kwargs):
            print('在这里可以加功能啊...')
            return self.func(*args,**kwargs)
        return feedback

class People:
    @StaticMethod# say_hi=StaticMethod(say_hi)
    def say_hi(x,y,z):
        print('------>',x,y,z)

People.say_hi(1,2,3)

p1=People()
p1.say_hi(4,5,6)



再看property

一个静态属性property本质就是实现了get,set,delete三种方法

class Foo:
    @property
    def AAA(self):
        print('get的时候运行我啊')

    @AAA.setter
    def AAA(self,value):
        print('set的时候运行我啊')

    @AAA.deleter
    def AAA(self):
        print('delete的时候运行我啊')

#只有在属性AAA定义property后才能定义AAA.setter,AAA.deleter
f1=Foo()
f1.AAA
f1.AAA='aaa'
del f1.AAA


 

class Foo:
    def get_AAA(self):
        print('get的时候运行我啊')

    def set_AAA(self,value):
        print('set的时候运行我啊')

    def delete_AAA(self):
        print('delete的时候运行我啊')
    AAA=property(get_AAA,set_AAA,delete_AAA) #内置property三个参数与get,set,delete一一对应

f1=Foo()
f1.AAA
f1.AAA='aaa'
del f1.AAA

 
怎么用?

 
class Goods:

    def __init__(self):
        # 原价
        self.original_price = 100
        # 折扣
        self.discount = 0.8

    @property
    def price(self):
        # 实际价格 = 原价 * 折扣
        new_price = self.original_price * self.discount
        return new_price

    @price.setter
    def price(self, value):
        self.original_price = value

    @price.deleter
    def price(self):
        del self.original_price


obj = Goods()
obj.price         # 获取商品价格
obj.price = 200   # 修改商品原价
print(obj.price)
del obj.price     # 删除商品原价

 
#实现类型检测功能

#第一关:
class People:
    def __init__(self,name):
        self.name=name

    @property
    def name(self):
        return self.name

# p1=People('alex') #property自动实现了set和get方法属于数据描述符,比实例属性优先级高,所以你这面写会触发property内置的set,抛出异常


#第二关:修订版

class People:
    def __init__(self,name):
        self.name=name #实例化就触发property

    @property
    def name(self):
        # return self.name #无限递归
        print('get------>')
        return self.DouNiWan

    @name.setter
    def name(self,value):
        print('set------>')
        self.DouNiWan=value

    @name.deleter
    def name(self):
        print('delete------>')
        del self.DouNiWan

p1=People('alex') #self.name实际是存放到self.DouNiWan里
print(p1.name)
print(p1.name)
print(p1.name)
print(p1.__dict__)

p1.name='egon'
print(p1.__dict__)

del p1.name
print(p1.__dict__)


#第三关:加上类型检查
class People:
    def __init__(self,name):
        self.name=name #实例化就触发property

    @property
    def name(self):
        # return self.name #无限递归
        print('get------>')
        return self.DouNiWan

    @name.setter
    def name(self,value):
        print('set------>')
        if not isinstance(value,str):
            raise TypeError('必须是字符串类型')
        self.DouNiWan=value

    @name.deleter
    def name(self):
        print('delete------>')
        del self.DouNiWan

p1=People('alex') #self.name实际是存放到self.DouNiWan里
p1.name=1
原文地址:https://www.cnblogs.com/l10n/p/13932367.html