c++刷leetcode记录

#include<iostream>
#include<sstream>
#include<vector>

std::vector<int> split(std::string& str, char delim = ' ') {
  std::stringstream ss(str);
  std::string tempStr;
  std::vector<int> vector;
 
  while (getline(ss, tempStr, delim)) {
    vector.push_back(atoi(tempStr.c_str()));
  }
 
  return vector;
}

int main() {
    std::string ret;
    int ans = 0;
    while (getline(std::cin, ret, '
')) {
        std::vector<int> vector = split(ret);
        ans = vector[0] + vector[1];
        std::cout << ans << std::endl;
    }
    
    return 0;
}

 

3. 无重复字符的最长子串

#include <iostream>
#include <unordered_set>


class Solution {
public:
    int lengthOfLongestSubstring(std::string s) {
        int length = s.size();
        int maxLength = 0;
        int lastMaxLength = 0;
        std::unordered_set<char> unorderedSet;
        //std::set<int> set;

        for (int i = 0; i < length; ++i) {
            unorderedSet.clear();
            for (int j = i; j < length; ++j) {
                if (unorderedSet.find(s[j]) != unorderedSet.end()) {
                    break;
                }
                unorderedSet.insert(s[j]);
                int nowLength = unorderedSet.size();
                maxLength = nowLength > lastMaxLength ? nowLength : lastMaxLength;
            }
            lastMaxLength = maxLength;
        }
        return maxLength;
    }
};

49. 字母异位词分组

#include <iostream>
#include <vector>
#include <unordered_set>
#include <map>
#include <algorithm>

/* 给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。

示例:

输入: ["eat", "tea", "tan", "ate", "nat", "bat"]
输出:
[
  ["ate","eat","tea"],
  ["nat","tan"],
  ["bat"]
]

 */

class Solution {
public:
    std::vector<std::vector<std::string>> groupAnagrams(std::vector<std::string>& strs) {
        std::map<std::string, std::vector<std::string>> map;
        for (auto ss: strs) {
            std::string value = ss;
            std::sort(ss.begin(), ss.end());
            map[ss].push_back(value);
        }

        std::vector<std::vector<std::string>> ret;
        for (auto it = map.begin(); it != map.end(); it++) {
            ret.push_back(it->second);
        }

        return ret;
    }
};

86. 分隔链表

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* partition(ListNode* head, int x) {
        ListNode* small = new ListNode(0);
        ListNode* smallHead = small;
        ListNode* large = new ListNode(0);
        ListNode* largeHead = large;

        while (head != nullptr) {
            if (head->val < x) {
                small->next = head;
                small = small->next;

            } else {
                large->next = head;
                large = large->next;
            }

            head = head->next;
        }

        large->next = nullptr;
        small->next = largeHead->next;

        return smallHead->next;

    }
};

16. 最接近的三数之和

错误代码:这个思路会少算很多可能性!!!

class Solution {
public:
    int threeSumClosest(std::vector<int>& nums, int target) {
        if (nums.size() < 3) {
            return 0;
        }

        std::sort(nums.begin(), nums.end());

        int start = 0;
        int end = nums.size() - 1;
        int sum = 0;
        int ans = nums[0] + nums[1] + nums[2];

        while (start < end) {
           //这里会少算很多可能性,这里只是计算了,s,s+1,e这种可能性,并没有算s+2,s+3,..的可能性,复杂度低了,但是结果就不对了,所以因此应该在外面再加一层循环,确保每一种可能性都被计算到
            sum = nums[start] + nums[start + 1] + nums[end];

            if(std::abs(target - sum) < std::abs(target - ans))
                ans = sum;

            if (sum < target) {
                start++;
            } else if (sum > target) {
                end--;
            } else {
                return ans;
            }

        }

        return ans;
    }    

正确代码:

class Solution {
public:
    int threeSumClosest(std::vector<int>& nums, int target) {
        std::sort(nums.begin(), nums.end());

        int s = 0;
        int e = nums.size() - 1;
        int ans = nums[0] + nums[1] + nums[2];

        for (int i = 0; i < nums.size(); ++i) {
            s = i + 1;//在这里更新s,保证s可以中开始---一直跳到--->结尾
            e = nums.size() - 1;//e每次都要更新,因为可能在while循环中更新了e
            while (s < e) {
                int sum = nums[i] + nums[s] + nums[e];
                if (std::abs(target - ans) > std::abs(target - sum))
                    ans = sum;

                if (sum == target)
                    return sum;
                if (sum < target)
                    s++;
                if (sum > target)
                    e--;
            }
        }

        return ans;
    }
};

27. 移除元素

#include <vector>

class Solution {
public:
    int removeElement(std::vector<int>& nums, int val) {
        int left = 0;
        //最终目标:保证(0, left)区间内一个val都没有

        for (int right = 0; right < nums.size(); ++right) {
            if (nums[right] != val) {
                nums[left] = nums[right];
                left++;
            }
        }

        return left;
    }
};

641. 设计循环双端队列

#include <vector>


class MyCircularDeque {
private:
    std::vector<int> vector_;
    int length_{ 0 };
public:
    /** Initialize your data structure here. Set the size of the deque to be k. */
    MyCircularDeque(int k) {
        length_ = k;
        //这里要用reserve不要用resize
        vector_.reserve(k);
    }

    /** Adds an item at the front of Deque. Return true if the operation is successful. */
    bool insertFront(int value) {
        if (isFull())
            return false;
        vector_.insert(vector_.begin(), value);
        return true;
    }

    /** Adds an item at the rear of Deque. Return true if the operation is successful. */
    bool insertLast(int value) {
        if (isFull())
            return false;
        vector_.push_back(value);
        return true;
    }

    /** Deletes an item from the front of Deque. Return true if the operation is successful. */
    bool deleteFront() {
        if (isEmpty())
            return false;
        vector_.erase(vector_.begin());
        return true;
    }

    /** Deletes an item from the rear of Deque. Return true if the operation is successful. */
    bool deleteLast() {
        if (isEmpty())
            return false;
        //注意,删除最后一个元素的时候,要减1,迭代器(vector_.end())指向的是最后一个元素的下一个
        vector_.erase(vector_.end() - 1);
        return true;
    }

    /** Get the front item from the deque. */
    int getFront() {
        if (isEmpty())
            return -1;
        return vector_.front();
    }

    /** Get the last item from the deque. */
    int getRear() {
        if (isEmpty())
            return -1;
        return vector_.back();
    }

    /** Checks whether the circular deque is empty or not. */
    bool isEmpty() {
        return vector_.empty();
    }

    /** Checks whether the circular deque is full or not. */
    bool isFull() {
        return length_ == vector_.size();
    }
};

/**
 * Your MyCircularDeque object will be instantiated and called as such:
 * MyCircularDeque* obj = new MyCircularDeque(k);
 * bool param_1 = obj->insertFront(value);
 * bool param_2 = obj->insertLast(value);
 * bool param_3 = obj->deleteFront();
 * bool param_4 = obj->deleteLast();
 * int param_5 = obj->getFront();
 * int param_6 = obj->getRear();
 * bool param_7 = obj->isEmpty();
 * bool param_8 = obj->isFull();
 */

406. 根据身高重建队列

#include <vector>
#include <algorithm>


class Solution {
public:
    std::vector<std::vector<int>> reconstructQueue(std::vector<std::vector<int>>& people) {
        //1.排序
        std::sort(people.begin(), people.end(),
                  [](std::vector<int> a, std::vector<int> b) {
                        if (a[0] != b[0])
                            return a[0] > b[0];
                      return a[1] < b[1];
        });

        //2.插入
        std::vector<std::vector<int>> res;
        for (auto p : people) {
            if (res.size() < p[1])
                res.push_back(p);
            if (res.size() >= p[1])
                res.insert(res.begin() + p[1], p);
        }

        return res;
    }
};

  

946. 验证栈序列

#include <stack>
#include <vector>


class Solution {
private:
    std::stack<int> *stack_ = new std::stack<int>;
public:
    bool validateStackSequences(std::vector<int>& pushed, std::vector<int>& popped) {
        int length = pushed.size();
        int j = 0;

        for (int i = 0; i < length; ++i) {
            stack_->push(pushed[i]);

            while (!stack_->empty() && stack_->top() == popped[j]) {
                j++;
                stack_->pop();
            }
        }

        //return stack_->empty();
        return j == length;
    }
};

笔记:bfs和dfs以及bfs衍生的层序遍历

https://leetcode-cn.com/problems/binary-tree-level-order-traversal/solution/bfs-de-shi-yong-chang-jing-zong-jie-ceng-xu-bian-l/

bfs层次遍历二叉树代码:

#include <vector>
#include <queue>

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
private:
    std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
    std::vector<std::vector<int>> levelOrder(TreeNode* root) {
        //bfs
        queue_->push(root);

        while (!queue_->empty()) {

            root = queue_->front();
            queue_->pop();

            if (root->left != nullptr) {
                queue_->push(root->left);
            }

            if (root->right != nullptr) {
                queue_->push(root->right);
            }
        }


    }
};

102. 二叉树的层序遍历

进一步,bfs衍生出层序遍历:

#include <vector>
#include <queue>

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
private:
    std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
    std::vector<std::vector<int>> levelOrder(TreeNode* root) {
        //层序遍历
        std::vector<std::vector<int>> ret;
        if (root != nullptr)
            queue_->push(root);

        while (!queue_->empty()) {
            int nodeNum = queue_->size();
            std::vector<int> vector;
            for (int i = 0; i < nodeNum; ++i) {
                root = queue_->front();
                queue_->pop();

                vector.push_back(root->val);

                if (root->left != nullptr) {
                    queue_->push(root->left);
                }
                if (root->right != nullptr) {
                    queue_->push(root->right);
                }
            }

            ret.push_back(vector);
        }

        return ret;
    }
};

116. 填充每个节点的下一个右侧节点指针

#include <vector>
#include <queue>


// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left( nullptr), right( nullptr), next( nullptr) {}

    Node(int _val) : val(_val), left( nullptr), right( nullptr), next( nullptr) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};


class Solution {
private:
    std::queue<Node*> *queue_ = new std::queue<Node*>;
public:
    Node* connect(Node* root) {
        //层序遍历
        if (root != nullptr)
            queue_->push(root);

        while (!queue_->empty()) {
            int nodeNum = queue_->size();

            for (int i = 0; i < nodeNum; ++i) {
                //注意这里的返回值不能是root,因为会更新root,导致结果不对
                //只需要更新原二叉树中响应位置的节点即可
                Node* temp = queue_->front();
                queue_->pop();

                //连接,但是每层的最后一个节点不处理
                if (i < nodeNum - 1)
                    temp->next = queue_->front();

                if (temp->left != nullptr)
                    queue_->push(temp->left);
                if (temp->right != nullptr)
                    queue_->push(temp->right);
            }
        }
        return root;
    }
};

61. 旋转链表

#include <vector>
#include <queue>

//Definition for singly-linked list.
struct ListNode {
    int val;
    ListNode *next;
    ListNode() : val(0), next(nullptr) {}
    ListNode(int x) : val(x), next(nullptr) {}
    ListNode(int x, ListNode *next) : val(x), next(next) {}
};

class Solution {
public:
    ListNode* rotateRight(ListNode* head, int k) {
        if (head == nullptr || head->next == nullptr || k == 0)
            return head;

        //求链表长度
        int length = 1;
        ListNode* tmp = head;
        while (tmp->next != nullptr) {
            tmp = tmp->next;
            length++;
        }
        int count = k % length;
        if (count == 0)
            return head;

        tmp->next = head;//链表连接成环

        for (int i = 0; i < length - count - 1; ++i) {
            head = head->next;
        }

        ListNode* ret = head->next;
        head->next = nullptr;

        return ret;
    }
};

729. 我的日程安排表 I

#include <map>
#include <algorithm>

class MyCalendar {
public:
    MyCalendar() {

    }

    bool book(int start, int end) {
        if (start >= end)
            return false;

        //0.start 已重复
        if (map_.find(start) != map_.end())
            return false;

        //1.首先插入
        map_.emplace(start, end);

        //2.返回刚刚插入的迭代器位置
        auto pos = map_.find(start);
        //auto pos = map_.find(start).first;

        //3.与(有序)map中的前后迭代器进行比较,根据比较结果决定保留或者删除
        //3.1 与前一个比较
        if (pos != map_.begin()) {
            --pos;//得到相邻的前一个迭代器 注意:因为map有序,所以这里默认的前一个迭代器的key < start
            if (pos->second > start) {
                //删除
                map_.erase(start);
                return false;
            }
            ++pos;
        }

        //3.2 与后一个比较
        ++pos;//得到相邻的后一个迭代器,这里的后一个迭代器默认的key > start
        if (pos != map_.end()) {
            if (pos->first < end) {
                //删除
                map_.erase(start);
                return false;
            }
        }

        return true;
    }

private:
    std::map<int, int> map_;
};

/**
 * Your MyCalendar object will be instantiated and called as such:
 * MyCalendar* obj = new MyCalendar();
 * bool param_1 = obj.book(start,end);
 */

105. 从前序与中序遍历序列构造二叉树

#include <vector>
#include <unordered_map>

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    TreeNode* buildTree(std::vector<int>& preorder, std::vector<int>& inorder) {
        int length = preorder.size();

        for (int i = 0; i < length; ++i) {
            unorderedMap_[inorder[i]] = i;
        }

        return mybuildTree(preorder, 0, length - 1, unorderedMap_, 0, length - 1);
    }

    TreeNode* mybuildTree(std::vector<int>& preorder, int preLeft, int preRight,
                          std::unordered_map<int, int>& map, int inLeft, int inRight) {
        //递归终止条件
        if (preLeft > preRight || inLeft > inRight)
            return nullptr;

        //0.构建待返回的二叉树
        int rootVal = preorder[preLeft];
        TreeNode* root = new TreeNode(rootVal);

        //1.得到根节点
        //注意:这里要用全局维护的唯一map!!!!!!!!!!!!!!!!!!!!!
        int pIndex = unorderedMap_[rootVal];

        //2.构建左子树
        root->left = mybuildTree(preorder, preLeft + 1, pIndex - inLeft + preLeft, unorderedMap_, inLeft, pIndex -1);

        //3.构建右子树
        root->right = mybuildTree(preorder, pIndex - inLeft + preLeft + 1, preRight, unorderedMap_, pIndex + 1, inRight);

        return root;
    }

private:
    std::unordered_map<int, int> unorderedMap_;
};

ps:后序和中序也能构造二叉树,代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */


 /*这是后序和中序的代码!!!!!!!!!!!!!!!!!!!!!!!!!*/
class Solution {
private:
    std::unordered_map<int, int> map;

public:
    TreeNode* mybuildTree(std::vector<int>& bakorder, int bakLeft, int bakRight,
                          std::unordered_map<int, int>& unorderedMap, int inLeft, int inRight) {
        //1.递归终止条件
        if (bakLeft > bakRight || inLeft > inRight)
            return nullptr;

        int rootVal = bakorder[bakRight];
        TreeNode* root = new TreeNode(rootVal);

        int pIndex = map[rootVal];

        root->left = mybuildTree(bakorder, bakLeft, pIndex-1-inLeft+bakLeft,
                                 map, inLeft, pIndex-1);

        root->right = mybuildTree(bakorder, pIndex-inLeft+bakLeft, bakRight-1,
                                  map, pIndex+1, inRight);

        return root;
    }

    TreeNode* buildTree(std::vector<int>& bakorder, std::vector<int>& inorder) {
        if (bakorder.size() != inorder.size())
            return nullptr;

        int length = bakorder.size();

        for (int i = 0; i < length; ++i) {
            map[inorder[i]] = i;
        }

        return mybuildTree(bakorder, 0, length - 1, map, 0, length - 1);
    }
};

112. 路径总和

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    bool hasPathSum(TreeNode* root, int targetSum) {
        if (root == nullptr)
            return false;

        //递归终止条件
        if (root->left == nullptr && root->right == nullptr)
            return targetSum == root->val;

        return hasPathSum(root->left, targetSum - root->val) or
               hasPathSum(root->right, targetSum - root->val);
    }
};

98. 验证二叉搜索树

中序遍历方法:https://blog.csdn.net/qq_44179564/article/details/108696548

#include <vector>


//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {

private:
    std::vector<int> vector;
public:
    bool isValidBST(TreeNode* root) {
        if (root == nullptr)
            return false;
        inorder(root);

        for (int i = 0; i < vector.size() - 1; ++i) {
            if (vector[i] >= vector[i + 1])
                return false;
        }

        return true;
    }

    void inorder(TreeNode* root) {
        if (root == nullptr)
            return;
        inorder(root->left);
        vector.push_back(root->val);
        inorder(root->right);
    }
};

101. 对称二叉树

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        return check(root, root);
    }

    bool check(TreeNode* r1, TreeNode* r2) {
        if (r1 == nullptr && r2 == nullptr)
            return true;

        if (r1 == nullptr || r2 == nullptr)
            return false;

        return r1->val == r2->val && check(r1->left, r2->right) && check(r1->right, r2->left);
    }
};

102. 二叉树的层序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
private:
    std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
    std::vector<std::vector<int>> levelOrder(TreeNode* root) {
        //层序遍历
        std::vector<std::vector<int>> ret;
        if (root != nullptr)
            queue_->push(root);

        while (!queue_->empty()) {
            int nodeNum = queue_->size();
            std::vector<int> vector;
            for (int i = 0; i < nodeNum; ++i) {
                root = queue_->front();
                queue_->pop();

                vector.push_back(root->val);

                if (root->left != nullptr) {
                    queue_->push(root->left);
                }
                if (root->right != nullptr) {
                    queue_->push(root->right);
                }
            }

            ret.push_back(vector);
        }

        return ret;
    }
};

1047. 删除字符串中的所有相邻重复项

冗余代码思路,用两个栈解决:

#include <string>
#include <stack>

class Solution {
private:
    std::stack<char> stack_;
public:
    std::string removeDuplicates(std::string S) {

        std::string ret;

        for (auto s : S) {
            if (!stack_.empty() && stack_.top() == s) {
                stack_.pop();
            } else {
                stack_.push(s);
            }
        }

        std::stack<char> tmp;

        while (!stack_.empty()) {
            tmp.push(stack_.top());
            stack_.pop();
        }

        while (!tmp.empty()) {
            ret += tmp.top();
            tmp.pop();
        }

        return ret;
    }
};

简洁代码,直接利用std::string本身就有的“栈特性”

#include <string>

class Solution {
public:
    std::string removeDuplicates(std::string S) {

        std::string ret;

        for (auto s : S) {
            if (!ret.empty() && ret.back() == s) {
                ret.pop_back();//弾栈操作
            } else {
                ret += s;
            }
        }

        return ret;
    }
};

1200. 最小绝对差

用stl里面的,可以允许key重复的multimap(注意这个map似乎没有重载[]插入的方式)

对于map:使用insert()插入元素的方式并不能覆盖掉相同key的值(跳过);而使用[]方式则可以覆盖掉之前的值

#include <string>
#include <vector>
#include <map>
#include <algorithm>

class Solution {
public:
    std::vector<std::vector<int>> minimumAbsDifference(std::vector<int>& arr) {

        std::sort(arr.begin(), arr.end());

        for (int i = 0; i < arr.size() - 1; ++i) {
            std::vector<int> vector;
            vector.clear();
            vector.push_back(arr[i]);
            vector.push_back(arr[i + 1]);
            multimap_.insert(std::make_pair(std::abs(arr[i] - arr[i + 1]), vector));
            //multimap_[std::abs(arr[i] - arr[i + 1])] = vector;
        }

        int flag = multimap_.begin()->first;
        std::vector<std::vector<int>> ret;

        for (auto it = multimap_.begin(); it != multimap_.end(); ++it) {
            if (it->first > flag) {
                break;
            }

            ret.push_back(it->second);
        }

        return ret;
    }

private:
    std::multimap<int, std::vector<int>> multimap_;
    //std::map<int, std::vector<int>> map_;
};

392. 判断子序列

#include <string>

class Solution {
public:
    bool isSubsequence(std::string s, std::string t) {
        int sLength = s.size();
        int tLength = t.size();

        int i = 0;
        int j = 0;

        while (i < sLength && j < tLength) {
            if (s[i] == t[j])
                i++;
            j++;
        }

        return i == sLength;
    }
};

1267. 统计参与通信的服务器

#include <vector>

class Solution {
public:
    int countServers(std::vector<std::vector<int>>& grid) {
        //
        int m = grid.size();
        //
        int n = grid[0].size();

        //求每一行/列共有多少台服务器
        std::vector<int> count_m(m), count_n(n);
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    count_m[i]++;
                    count_n[j]++;
                }
            }
        }

        //第二次遍历,求可通信服务器数量
        int ret = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                //判断有效的条件
                if (grid[i][j] == 1 && (count_m[i] > 1 || count_n[j] > 1)) {
                    ret++;
                }
            }
        }

        return ret;
    }
};

剑指 Offer 33. 二叉搜索树的后序遍历序列

#include <vector>

class Solution {
public:
    /*
     * 1.后序遍历: 左、右、根
     * 2.二叉搜索树:左子树所有节点的值 < 根节点的值;
     *             右子树所有节点的值 > 根节点的值*/
    bool verifyPostorder(std::vector<int>& postorder) {

        return help(postorder, 0, postorder.size() - 1);
    }

    bool help(std::vector<int>& postorder, int i, int j) {
        //递归终止条件:整个二叉树遍历完了
        if (i >= j)
            return true;
        //利用指针p,试图: 任务1.区分左右子树;任务2.遍历完这一次递归的整个树
        int p = i;
        while (postorder[p] < postorder[j]) {
            p++;
        }
        //找到了右子树,任务1完成
        int m = p;
        while (postorder[p] > postorder[j]) {
            p++;
        }
        //遍历完了这一次递归的整个树,任务2完成

        //继续递归,分别判断左子树和右子树
        return j == p && help(postorder, i, m -1) && help(postorder, m, j-1);
    }
};

300. 最长递增子序列

#include <vector>
#include <algorithm>

class Solution {
public:
    int lengthOfLIS(std::vector<int>& nums) {
        int n = nums.size();
        if (n == 0)
            return 0;

        std::vector<int> dp(n ,1);

        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    dp[i] = std::max(dp[i], dp[j] + 1);
                }
            }
        }

        return *std::max_element(dp.begin(), dp.end());

    }
};
原文地址:https://www.cnblogs.com/kongweisi/p/14724157.html