多项式牛顿迭代

多项式牛顿迭代

[f(g(x))equiv 0 (mod x^n) ]

求出此模意义下的(g(x))

(n=1)时,单独求出([x^0]f(g(x)))

假设已经得到了模(x^{lceilfrac{n}{2} ceil})意义下的解(g_0(x)),要求模(x^{n})意义下的解(g(x))

(f(g(x)))(g_0(x))处泰勒展开得到

[sum_{n}frac{f^{(n)}(g_0(x))}{n!}(g(x)-g_0(x))^nequiv 0 (mod x^n) ]

因为(g(x)-g_0(x))的最低非零次项的次数为(lceilfrac{n}{2} ceil),故有

[forall ngeq 2,(g(x)-g_0(x))^nequiv 0 (mod x^n) ]

[sum_{n}frac{f^{(n)}(g_0(x))}{n!}(g(x)-g_0(x))^nequiv f(g_0(x))+f'(g_0(x))(g(x)-g_0(x)) (mod x^n)\ g(x)equiv g_0(x)-frac{f(g_0(x))}{f'(g_0(x))} (mod x^n)\ ]

原文地址:https://www.cnblogs.com/knife-rose/p/15345059.html