构造+均值不等式

已知(f(x)=e^{2x}-alnx-bx,xin (0,+∞))

((1))(a=0)时,求函数(f(x))的极值

((2))(b=0,a>0)时,求证:(f(x)ge 2a+alnfrac{2}{a})

解:

((1))

(a=0)

[f(x)=e^{2x}-bx ]

[f'(x)=2e^{2x}-b ]

(ble 2)

(f'(x)ge 0)(f(x))无极值

(b>2)

[f'(x)=2e^{2x}-b=0 ]

[x=frac{1}{2}ln(frac{b}{2}) ]

(f(x))极小值为(f(frac{1}{2}ln(frac{b}{2}))=frac{b}{2}ln(1-frac{b}{2})),无极大值

((2))

(b=0,a>0)

[f(x)=e^{2x}-alnx ]

[f'(x)=2e^{2x}-frac{a}{x} ]

(2e^{2x})单调增,(-frac{a}{x})单调增,所以(f'(x))单调增

[f'(x→0)→-∞<0 ]

[f(a)=2e^{2a}-frac{a}{a}>0 ]

所以在((0,a))(f'(x))存在零点(x_0)

[f'(x_0)=2e^{2x_0}-frac{a}{x_0}=0 ]

[2e^{2x_0}=frac{a}{x_0} ]

[2x_0=lnfrac{a}{x_0} ]

[f_{min}(x)=f(x_0)=e^{2x_0}-frac{a}{x_0} ]

[=frac{a}{2x_0}+2ax_0-2ax_0-alnx_0 ]

[=frac{a}{2x_0}+2ax_0-a(2x_0+lnx_0) ]

[=frac{a}{2x_0}+2ax_0-a(lnfrac{a}{2x_0}+lnx_0) ]

[=frac{a}{2x_0}+2ax_0-alnfrac{a}{2} ]

[=frac{a}{2x_0}+2ax_0+alnfrac{2}{a}ge 2*sqrt{frac{a}{2x_0}*2ax_0}+alnfrac{2}{a}=2a+alnfrac{2}{a} ]

综上(f(x)ge 2a+lnfrac{2}{a})

原文地址:https://www.cnblogs.com/knife-rose/p/13292584.html