EM算法

EM算法简述

EM算法是机器学习中一个很重要的算法,即期望最大化算法,主要包括以下两个步骤:

  •   E步骤:estimate the expected values
  •   M步骤:re-estimate parameters

  可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。

  EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据(incomplete data)。

  假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,Z = (X,Y)和 X 分别称为完整数据和不完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ 表示要被估计的参数。Θ 的最大似然估计是求不完整数据的对数似然函数L(X;Θ)的最大值而得到的:

  L(Θ; X )= log p(X |Θ) = ∫log p(X ,Y |Θ)dY ;

  EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc( X;Θ )的期望来最大化不完整数据的对数似然函数,其中:

  Lc(X;Θ) =log p(X,Y |Θ) ;

  假设在算法第t次迭代后Θ 获得的估计记为Θ(t ) ,则在(t+1)次迭代时,

  E-步:计算完整数据的对数似然函数的期望,记为:

  Q(Θ |Θ (t) ) = E{Lc(Θ;Z)|X;Θ(t) };

  M-步:通过最大化Q(Θ |Θ(t) ) 来获得新的Θ 。

  通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。

  EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优。

EM算法在 k-mean 聚类中的应用

假设 k-mean 聚类的目标函数 J 为:
Latex Equation:
J=\sum_{N}^{n=1}\sum_{K}^{k=1}r_{nk}\left \| X_n-\mu _k \right \|^2
其中 r_nk 是一个二进制矢量,决定样本 X 属于哪个类。 U_k 是每个类的中心点矢量。
EM算法的两步分别为:
  1. 固定 U_k,计算 r_nk 使得 J 最小。(E)
  2. 固定 r_nk,计算 U_k 使得 J 最小。(M)
下图展示了一个 EM 算法迭代计算 k-mean 的例子




原文地址:https://www.cnblogs.com/kidoln/p/2312767.html