支持向量机(一)

SVM简介

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,广泛的应用于统计分类以及回归分析中,并可推广于预测和综合评价等领域。SVM属于一般化线性分类器,这族分类器的特点是能够同时最小化经验误差与最大化几何边缘区。

支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

支持向量机我们通常希望分类的过程是一个机器学习的过程。这些数据点是n维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。

支持向量机(Support vector machines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。

SVM的关键在于核函数。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,就可以得到高维空间的分类函数。在SVM 理论中,采用不同的核函数将导致不同的SVM算法。

一个简单的解释

例如我们有一个线性函数:g(x)=wx+b

我们可以取阈值为0,这样当有一个样本xi需要判别的时候,我们就看g(xi)的值。若g(xi)>0,就判别为类别C1,若g(xi)<0,则判别为类别C2(等于的时候我们就拒绝判断,呵呵)。此时也等价于给函数g(x)附加一个符号函数sgn(),即f(x)=sgn [g(x)]是我们真正的判别函数。

关于g(x)=wx+b这个表达式要注意三点:一,式中的x不是二维坐标系中的横轴,而是样本的向量表示,例如一个样本点的坐标是(3,8),则xT=(3,8) ,而不是x=3(一般说向量都是说列向量,因此以行向量形式来表示时,就加上转置)。二,这个形式并不局限于二维的情况,在n维空间中仍然可以使用这个表达式,只是式中的w成为了n维向量(在二维的这个例子中,w是二维向量,为了表示起来方便简洁,以下均不区别列向量和它的转置,聪明的读者一看便知);三,g(x)不是中间那条直线的表达式,中间那条直线的表达式是g(x)=0,即wx+b=0,我们也把这个函数叫做分类面。

实际上很容易看出来,中间那条分界线并不是唯一的,我们把它稍微旋转一下,只要不把两类数据分错,仍然可以达到上面说的效果,稍微平移一下,也可以。此时就牵涉到一个问题,对同一个问题存在多个分类函数的时候,哪一个函数更好呢?显然必须要先找一个指标来量化“好”的程度,通常使用的都是叫做“分类间隔”的指标。

文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标。

在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成。如下:

Di=(xi,yi) xi就是文本向量(维数很高),yi就是分类标记。

在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表示属于还是不属于这个类)。有了这种表示法,我们就可以定义一个样本点到某个超平面的间隔:

δi=yi(wxi+b)

这个公式乍一看没什么神秘的,也说不出什么道理,只是个定义而已,但我们做做变换,就能看出一些有意思的东西。

首先注意到如果某个样本属于该类别的话,那么wxi+b>0(记得么?这是因为我们所选的g(x)=wx+b就通过大于0还是小于0来判断分类),而yi也大于0;若不属于该类别的话,那么wxi+b<0,而yi也小于0,这意味着yi(wxi+b)总是大于0的,而且它的值就等于|wxi+b|!(也就是|g(xi)|)。现在把w和b进行一下归一化,即用w/||w||和b/||w||分别代替原来的w和b,那么间隔就可以写成:

Latex Equation:
\delta_i=\frac{1}{\begin{Vmatrix} w \end{Vmatrix}}
\begin{vmatrix} g(x_i) \end{vmatrix}
 

这个公式是不是看上去有点眼熟?没错,这不就是解析几何中点xi到直线g(x)=0的距离公式嘛!(推广一下,是到超平面g(x)=0的距离, g(x)=0就是上节中提到的分类超平面)||w||叫做向量w的范数,范数是对向量长度的一种度量。

当用归一化的w和b代替原值之后的间隔有一个专门的名称叫做几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,我们下面就简称几何间隔为“距离”。以上是单个点到某个超平面的距离(就是间隔,后面不再区别这两个词)定义,同样可以定义一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。下面这张图更加直观的展示出了几何间隔的现实含义:

H是分类面,而H1和H2是平行于H,且过离H最近的两类样本的直线,H1与H,H2与H之间的距离就是几何间隔。之所以如此关心几何间隔这个东西,是因为几何间隔与样本的误分次数间存在关系。

至此我们就明白为何要选择几何间隔来作为评价一个解优劣的指标了,原来几何间隔越大的解,它的误差上界越小。因此最大化几何间隔成了我们训练阶段的目标。

参考





原文地址:https://www.cnblogs.com/kidoln/p/2312182.html