YAOI Round #3 题解

前言

比赛链接:

Div.1 : http://47.110.12.131:9016/contest/7

Div.2 : http://47.110.12.131:9016/contest/8

Div.2——四月是你的谎言

下面是 Div.2 的题解。

A. 若能绽放光芒

首先讲一个 (Theta(n^3)) 的暴力:

枚举区间 ([l,r]),这里已经有 (Theta(n^2)) 的时间复杂度了。

然后我们考虑怎么找到这段区间对应的最长公共“子序列”。

这个贪心一下,找到从左到右的第一个下一个字母,(Theta(n)) 匹配即可,这里有 (Theta(n)) 的时间复杂度。

故总的时间复杂度是 (Theta(n^3))

接着讲一下 (Theta(n^2)) 的做法:

实际上你会发现上面那个是增量构造,对此我们可以优化。

考虑固定左端点,右移右端点,这样可以省去一维的复杂度。

于是就优化成了 (Theta(n^2)) 的时间复杂度,即可通过本题。

for(Re int i=1;i<=n;i++)
{
	int k=0;
	for(Re int j=i;j<=n;j++)
	{
		while(k<=m&&b[k]!=a[j])
		{
			k++;
		}
		if(k>m)
		{
			ans=min(ans,j-i+1);
			break;
		}
		k++;
	}
}

B. 七色交响曲

对于 (30\%) 的数据,我们考虑对 (n) 个物品枚举它们属于的容器情况即可,时间复杂度大约为 (Theta(n!))

对于 (60\%) 的数据,我们换个更优秀的搜索策略,并加上记忆化

考虑 ([l,r]) 区间最优怎么算,我们枚举它中间的断点,把这个区间分成两块处理,也就是所谓的分治

它的思想就是来源于搜索,于是我们考虑在分治过程中加上记忆化数组。

这样,它的时间复杂度为 (Theta(n^3))

对于 (100\%) 的数据,我们考虑这样一个动态规划想法:

如果想到了上面的记忆化搜索思想,那这题的动态规划思路应该还是很好想的。

(f[i]) 表示将 (1)(i) 的物品都放入容器中的最小费用。

我们考虑枚举一个 (j) 来进行转移,具体状态转移方程如下:

[f[i]=min_{0leq j<i}{f[j]+(sum_{k=j+1}^{i}l[k]+i-j-1-p)^{2}} ]

(l) 的前缀和数组为 (s) ,即 (s[i]=sumlimits_{k=1}^{i}l[k]) ,那么方程就变为如下形态:

[f[i]=min_{0leq j<i}{f[j]+(s[i]-s[j]+i-j-1-p)^{2}} ]

此时我们暴力去做,时间复杂度为 (O(n^2)),即可通过本题。

memset(dp,127/3,sizeof dp);
dp[0]=0;
for(Re int i=1;i<=n;i++)
{
	for(Re int j=0;j<i;j++)
	{
		dp[i]=min(dp[i],dp[j]+(s[i]-s[j]+i-j-1-p)*(s[i]-s[j]+i-j-1-p));
	}
}

C. 闪耀

为了方便起见,下面设题目中的两人为甲、乙。

设投票记录用 (m+n) 元有序组 ((a_1,a_2,...,a_{m+n})) 表示。

当第 (1leq kleq m+n) 次唱票时,如果选票为甲,则 (a_k=1),否则 (a_k=-1)

(b_k=sumlimits_{i=1}^{k}a_i),然后考虑用折线法来求解。

从左到右连接以下格点:((1,b_1),(2,b_2),...,(m+n,b_{m+n})),得到一条 (m+n-1) 节的折线。

因为甲的票数一直领先,所以 (forall k,b_k>0),且 (b_1=1,b_{m+n}=m-n)

换句话说,这是一条连接 ((1,1))((m+n,m-n)) 且与 (x) 轴没有交点的折线。

由简单的数学知识可知:这种折线数目为 (egin{aligned} ext{C}_{m+n-1}^{m-1}- ext{C}_{m+n-1}^{m}=frac{m-n}{m+n} ext{C}_{m+n}^{m} end{aligned})

直接预处理逆元后输出即可,时间复杂度 (Theta(n))

int ans=1;
ans=(1ll*ans*inv[m+n])%mod;
ans=(1ll*ans*(m-n))%mod;
for(Re int i=1;i<=m;i++)
{
	ans=(1ll*ans*inv[i])%mod;
	ans=(1ll*ans*(m+n-i+1))%mod;
}

D. 橘黄

搜索即可,你们不是刚刚学了搜索吗???

直接枚举每种情况,然后算答案即可,时间复杂度约为 (Theta(n!))

由于这种做法比较简单,更优的做法代码放在 Div.2 的 D 题中。

E. 爱之忧伤

对于 (20\%) 的数据,我们考虑枚举两个点 (i,j) 后暴力跳 LCA 来求 (f(i,j)),时间复杂度为 (Theta(n^3))

对于 (50\%) 的数据,我们在跳 LCA 的时候考虑 倍增/重链剖分/Tarjan 来优化它,时间复杂度可以做到 (Theta(n^2log n))

对于 (100\%) 的数据,我们换一个思路:

对于每个点,看看它是哪些点对的 LCA,然后只要考虑每个点这样的贡献,最后把它们求和。

具体来说,我们枚举一个 (i),记录下以 (i) 为根的子树大小,然后直接用这个计算即可。

时间复杂度为 (Theta(n))

inline void dfs(int u,int f)
{
	sz[u]=1;
	for(Re int i=0;i<T[u].size();i++)
	{
		int v=T[u][i];
		if(v==f) continue;
		dfs(v,u);
		ans=(ans+a[u]*(1ll*sz[u]*sz[v]%mod)%mod)%mod;
		sz[u]+=sz[v];
	}
}

Div.1——末日三问

下面是 Div.1 的题解。

A. Always in my heart

我们考虑把每个位置连一条指向下一个 ( ext{a})( ext{z}) 的边,这样形成的图叫作子序列自动机

所以用 (Theta(n |Sigma|)) 的时间建出来,再用 (Theta(n)) 的时间枚举一遍,然后就做完了。

f[0][0]=0;
for(Re int i=0;i<=m;i++)
{
	for(Re int k=0;k<26;k++)
	{
		if(pntB[i][k]!=-1)
		{
			for(Re int j=0;j<=n;j++)
			{
				if(pntA[j][k]!=-1)
				{
					f[pntB[i][k]][pntA[j][k]]=min(f[pntB[i][k]][pntA[j][k]],f[i][j]+1);
				} 
			}
		} 
		else 
		{
			for(Re int j=0;j<=n;j++)
			{
				if(pntA[j][k]!=-1)
				{
					ans=min(ans,f[i][j]+1);
				}
			}
		}
	}
}

B. Ever be my love

我们考虑把 Div.3 的那个式子优化成 (Theta(n)),而这要用到斜率优化的内容,可以学一学,详见:

https://www.cnblogs.com/kebingyi/p/14157680.html

C. Chtholly Nota Seniorious

本题与 Div.3 的 C 题类似,读者可不妨自行推导出这样的式子:

[ans=frac{m}{m+n} ext{C}_{m+2n-1}^{n} ]

同样,我们直接求解即可。

int ans=1;
ans=(1ll*ans*inv[m+n])%mod;
ans=(1ll*ans*m)%mod;
for(Re int i=1;i<=n;i++)
{
	ans=(1ll*ans*inv[i])%mod;
	ans=(1ll*ans*(m+n+n-i))%mod;
}

D. Scarborough Fair

很妙的!

这个搜索类似于上面 Div.3 的 B 题中 (60\%) 部分分的形式。

我们以几乎同样的思路再做一遍就不难得出正解,具体的由场切的 chenxulei 大佬来讲解吧!

其实这个题是 IOI2020 国家集训队作业的原题,有能力的同学可以考虑刷一刷这个。

LL dfs(int L,int R,LL x,LL y)
{
	if(L>R) return 0;
	LL ret=1e17;
	for(Re int i=L;i<=R;i++)
	{
		ret=min(ret,dfs(L,i-1,x,x+y)+dfs(i+1,R,x+y,y)+a[i]*(x+y));
	}
	return ret;
}

E. 最幸福的女孩

大家知道那个 (O(nln n)) 求数论函数的技巧吗?

不知道的话可以学学,看如下标程:

for (Re int i = 1, j; i < maxn; i++)
	for (Re int j = 1; j * i < maxn; j++)
		(f[i * j] += g[i] * 1ll * phi[j] % mod * mu[pi[i]] % mod) %= mod;

这么做看着是 (O(n^2)) 的,其实是 (O(nln n)) 的,至于为什么就自己去学学吧……

然后前缀和一下:

for (Re int i = 1; i < maxn; i++) (f[i] += f[i - 1]) %= mod;

这样就可以 (O(1)) 查询了。

原文地址:https://www.cnblogs.com/kebingyi/p/14247064.html