DP

辣鸡动态规划毁我青春~~

动态规划中的基本概念

状态:要算什么

转移方程:如何去算

无后效性:把状态看做一个点,转移过程看作一条边,动态规划的所有概念组成了一个有向无环图((DAG)),所以在做题时一定要考虑是不是满足无后效性

一旦出现乱序的情况,应该对这个图先进行一个拓扑排序

背包问题

(N)个物品,有一个(M)溶剂的包,每个物品有一个体积和价值,要求最大化价值之和

(i)个物品的价值为(V_i),占(W_i)的空间

(dp[i][j])表示已经放好了前(i)个物品,现在放进去的物品的体积之和为(j)

考虑转移方程:

(i+1)个物品只有两种情况:放入背包与不放入背包

如果放入第(i+1)个物品,体积不变,价值也不变

如果不放入第(i+1)个物品,应该转移为(dp[i+1][j+V_{i+1}])

现在对于每一个物品就只有放和不放两种情况(这是用自己更新别人的方法)

如果用别人更新自己呢?

对于(dp[i][j]),如果第(i-1)个物品没有放,是由(dp[i-1][j])转移而来的

否则就是由(dp[i-1][i-V_i])更新而来的(加上(W_i)

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

int dp[10010][10010];
int w[10010],v[10010];
int n,m;
int ans=0;

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i)
		scanf("%d%d",&v[i],&w[i]);
	for(int i=1;i<=n;++i)
		for(int j=0;j<=m;++j)
		{
			dp[i][j]=dp[i-1][j];
			if(j>=v[i])
				dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
		}	
	for(int i=0;i<=m;++i)
		ans=max(ans,dp[n][i]);
	printf("%d",ans);
	return 0;
}

现在每个物品可以用无限次,这个时候要怎么办呢?

直接枚举每个物品用多少次就行了

但是复杂度太高(Omega omega Omega)

我们只需要将原来的(dp[i-1][j-v_i]+w_i)变为(dp[i][j-v_i]+w_i)就好了

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

int dp[10010][10010];
int w[10010],v[10010];
int n,m;
int ans=0;

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i)
		scanf("%d%d",&v[i],w[i]);
	/*for(int i=1;i<=n;++i)
		for(int j=0;j<=m;++j)
			for(int k=0;k*v[i]<=j;++k) 
			{
					dp[i][j]=max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
			}*/	
	for(int i=1;i<=n;++i)
		for(int j=0;j<=m;++j)
		{
			dp[i][j]=dp[i-1][j];
			if(j>=v[i])
				dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
		}	
	for(int i=0;i<=m;++i)
		ans=max(ans,dp[n][i]);
	printf("%d",ans);
	return 0;
}

那如果每个物品只能用有限次,那怎么办呢

还是直接枚举每个物品用多少次就行了

这个东西的复杂度是(O(n^3))

那么如何优化呢?(有点难)

有限背包最慢的地方是枚举每个物品用了多少次

思想就是将一个背包变成多个捆绑包(进行二进制分解,如果不够了,就只能委屈一下最后一个捆绑包了),然后就变成了一个(01)背包

(13)为例,可以拆成:(1)(2)(4)(6)四个捆绑包

代码如下(主要是拆捆绑包的部分)

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

int dp[10010][10010];
int w[10010],v[10010];
int n,m;
int ans=0;

int main()
{
	scanf("%d%d",&n,&m);
	int cnt=0; 
	for(int i=1;i<=n;++i)
	{
		int v_,w_,z;
		scanf("%d%d%d",&v_,&w_,&z);
		int x=1;
		while(x<=z)
		{
			cnt++;
			v[cnt]=v_*x;
			w[cnt]=w_*x;
			z-=x;
			x*=2;
		}
		if(z>0)
		{
			cnt++;
			v[cnt]=v_*z;
			w[cnt]=w_*z;
		}
	}
	for(int i=1;i<=cnt;++i)
		for(int j=0;j<=m;++j)
		{
			dp[i][j]=dp[i-1][j];
			if(j>=v[i])
				dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
		}	
	for(int i=0;i<=m;++i)
		ans=max(ans,dp[n][i]);
	printf("%d",ans);
	return 0;
}

基础(DP)

例题一 数字三角形:

状态:(dp[i][j])表示走到第(i)行第(j)列时所走的路径的最大值

状态转移方程:(dp[i][j]=max(dp[i-1][j-1],f[i-1][j])+a[i][j])

例题二 数字三角形:

诶诶,怎么还是水三角形???

现在求的是答案对(100)取模之后的最大值

怎么做呢?

钟皓曦:维度不够加一维,维度不够再加一维,你总有一天会过的

状态:布尔状态,(dp[i][j][k])表示走到第(i)行第(j)列的数对(100)取模等于(k)是不是可行的

状态转移:考虑用自己更新别人,由(dp[i][j][k])可以转移到(dp[i+1][j][(a[i+1][j]+k)mod 100])(dp[i+1][j+1][(a[i+1][j+1]+k)mod 100])

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

bool dp[233][233][233];
int n;
int a[233][233];
int ans;

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;++i)
		for(int j=1;j<=i;++j)
			scanf("%d",&a[i][j]);
	dp[1][1][a[1][1]%100]=true;
	for(int i=1;i<=n;++i)
		for(int j=1;j<=i;++j)
			for(int k=0;k<100;++k)
				if(dp[i][j][k])
				{
					dp[i+1][j][(k+a[i][j])%100]=true;
					dp[i+1][j+1][(k+a[i+1][j+1])%100]=true;
				}
	for(int i=1;i<=n;++i)
		for(int j=0;j<100;++j)
			if(dp[n][i][j])	ans=max(ans,j);
	printf("%d",ans);
	return 0; 
}

例题三 最长上升子序列:

状态:(dp[i])表示以(i)结尾的最长上升子序列的长度

状态转移:(f[i]=max(f[j])+1)满足(1leq j<i)并且(a[j]<a[i])

这个算法复杂度是(O(n^2))

如果数据再大一点,就可以用线段树

区间(DP)

例题一 合并石子:

把两对相邻的石子合并为一堆石子,每次合并的代价就是两堆石子的个数之和,现在问把(n)堆石子合并为(1)堆石子的最小代价是多少

我们可以发现每次合并是将一段区间的石子合并

这就是一个区间(DP)

区间(DP)的状态一般为(dp[l][r])

状态:$dp[l][r] (表示)[l,r](区间合并的最小代价()dp[l][l]=0$)

每次都可以在区间中找到一个分界线,最后合并分界线两边的区间

那么就可以枚举分界线(p)

状态转移:(dp[l][r]=min(dp[l][r],dp[l][p]+dp[p+1][r]+sum[r]-sum[l-1])

例题二 无题

把一排矩阵排排坐,保证矩阵是可以相乘得到一个结果的,现在在这几个矩阵中加上括号,使得运算次数最小

状态:(dp[l][r])表示将第(l)个矩阵和第(r)个矩阵的最小运算次数

状态转移:(dp[l][r]=min(dp[l][p]+f[p+1][r]+a[l] imes a[p+1] imes a[r+1]))(p)是中点。

状压(DP)

例题一 旅行商问题

在平面上由(n)个点,给出每个点的坐标,现在由(1)号点出发,把所有点都走一遍然后回到(1)号点,求最短距离

首先,一般来说我们没有必要把一个点走两次

当前在哪个点、走过了那个点是两个变化的量

状态:(dp[s][i])(i)表示现在走到了第(i)个点,(s)表示走过了那些点

理论上来说,(s)是要用一个数组来维护的,但是我们现在要用一个数来表示

那么我们就可以用一个二进制数来表示哪些点没走,哪些点走了((1)表示走过,(0)表示没走过)

状压(DP)能解决的范围在(nleq 20-22),因为复杂度为(O(2^n imes n^2))

可爱的代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring> 

using namespace std;

double dp[233][233];
double x[233],y[233];
double ans=0x3f;
int n;

double dis(int xx,int yy)
{
	return sqrt((x[xx]-x[yy])*(x[xx]-y[yy])+(y[xx]-y[yy])*(y[xx]-y[yy]));
}

int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;++i)
		scanf("%lf%lf",&x[i],&y[i]);
	memset(dp,0x3f,sizeof(dp));
	dp[1][0]=0;
	for(int s=0;s<(1<<n);s++)
		for(int i=0;i<n;++i)
			if(dp[s][i]<0x3f)//这是一个可行的方案 
			{
				for(int j=0;j<n;++j)
					if((s>>j)&1==0)//将s二进制的第j为取了出来 
					{
						int news=s|(1<<j);//把s的第j为变成了1
						dp[news][j]=min(dp[news][j],dp[s][i]+dis(i,j)); 
					}
			} 
	for(int i=0;i<n;++i)
		ans=min(ans,dp[(1<<n)-1][i]+dis(i,0));
	printf("%d",ans);
	return 0;
}

例题二 玉米田

(JOHN)要在一片牧场上种草,每块草坪之间没有相邻的边

状态:(dp[i][s])表示前(i)行的草都种完了,(s)表示第(i)行的草种成了什么样,这种情况下的方案数为(dp[i][s])

考虑第(i+1)行如何种草:

首先第(i+1)行种的草没有两个连续的

其次第(i)行的草和第(i+1)行的草没有相邻的草,就是(s)&(s)'=(0)

例题三 (K)国王问题

(N imes N)的棋盘中,放(k)个国王,使这些国王不能相互攻击到对方(国王的攻击范围就是其周围的(8)个格子)

参照上一道题(种国王)

状态:(dp[i][s])表示前(i)行的国王都种完了,(s)表示第(i)行的国王种成了什么样,这种情况下的方案数为(dp[i][s])

但是这个题要多放一个国王,所以我们要多加一个维度

新状态:(dp[i][s][j])表示前(i)行的国王都种完了,(s)表示第(i)行的国王种成了什么样,现在放了(j)个国王,这种情况下的方案数为(dp[i][s])

数位(DP)

是在(DP)的过程中按照数的位数进行转移的

例题一 无题

给出两个数(l、r),求这之间有多少个数

首先,([l,r])之间有多少数,就是求([0,l])([0,r])之间分别有多少数,然后相减

数位(DP),就是将一个(n)位数,抽象为(n)个格子,如果要求有多少个数小于这个数,可以用数字填满这(n)个格子

注意:一定要从高位向低位一位一位的填

状态:(dp[i][j])中,已经填好了前(i)位,(j=0)表示当前这个数一定小于(x)(j=1)表示当前这个数不确定是否小于(x)

状态转移:数位(DP)的转移都是去枚举下一位填什么数

代码:

#include<cstdio>
#include<iostream>
#include<cstring>

using namespace std;

int l,r;
int dp[10010][10010];
int z[10010];

int solve(int x)
{
	int l=0;
	while(x>0)
	{
		l++;
		z[l]=x%10;
		x/=10;
	}
	memset(dp,0,sizeof(dp));
	dp[l+1][1]=1;//在第l+1位之后都只能填0
	/*转移考虑用自己去更新别人*/
	for(int i=l+1;i>=2;i--)
		for(int j=0;j<=1;++j)
			for(int k=0;k<=9;++k)//枚举应该填哪一个数
			{
				if(j==1&&k>z[i-1])	continue;
				int j_;
				if(j==0)	
					j_=0;
				else if(k==z[i-1])
					j_=1;
				else 
					j_=0;
				dp[i-1][j_]+=dp[i][j];
			}
	return dp[1][0]+dp[1][1];
}

int main()
{
	scanf("%d%d",&l,&r);
	printf("%d",solve(r)-solve(l-1));
	return 0;
}

例题二 无题

([l,r])中所有数的数位之和

同样,我们可以转化为([0,r])([0,l-1])之间有的数位之和

状态:(dp[i][j])表示第(i)位已经填完了,(j=0)表示当前这个数一定小于(x)(j=1)表示当前这个数不确定是否小于(x),这时的方案数

例题三 无题

([l,r])中有多少个相邻两位数字之差大于等于(2)的数

状态:$ dp[i][j][k](表示当前已经填了)i(个数,)j=0(表示当前这个数一定小于)x(,)j=1(表示当前这个数不确定是否小于)x(,第)i(位填的数是)k$

例题四 无题

([l,r])中满足各位数字之积位(k)的数有多少个

状态:(dp[i][j][r])表示当前已经填了(i)个数,(j=0)表示当前这个数一定小于(x)(j=1)表示当前这个数不确定是否小于(x),当前乘积为(r)

有些(r)是永远不会用到的,就是那些大于(10)的质数的倍数

新状态:(dp[i][j][a][b][c][d])表示当前已经填了(i)个数,(j=0)表示当前这个数一定小于(x)(j=1)表示当前这个数不确定是否小于(x),现在的乘积为(2^a+3^b+5^c+7^d)

树形(DP)

例题一 无题

现在给你一棵(n)个点的树,问这个树有多少点???

树形(DP)一般是(DP)以这个点为根的子树的状态

状态:(f[i])表示以(i)为根的树有多少个点

状态转移:(f[i]=sum_{jin})

例题二 无题

给出一棵树,求出树的直径

将两个点的路径看做由(LCA)向下的两条路径

状态:(f[i][0])表示第(i)个点向下的最大值,(f[i][1])表示最小值

状态转移:(f[i][0]=max(f[p_j][0])+1)(f[i][1])的值应该是剩下的所有儿子的最长路中的最长路

#include<cstdio>
#include<iostream>

using namespace std;

void dfs(int i)
{
	for(p is i's son)//教大家如何写伪代码,你只需要boomboomboom,然后boomboomboom,就能boomboom了
		dfs(p);
	for(p is i's son)
	{
		int v=f[p][0];
		if(v>f[i][0])
		{
			f[i][1]=f[i][0];
			f[i][0]=v;
		}
		else if(v>f[i][1])
			f[i][1]=v;
	}
}

int main()
{
	scanf("%d",&n);
	du ru jian shu;
	dfs(1);//强行令1号点为根 
	return 0;
}

例题三 无题

求所有点之间的路径之和为多少

状态:(dp[i])表示以(i)为根的子树有多少个点

例题四 无题

1563352056821

状态:(dp[i][0/1])表示到了第(i)个点,(1)表示选了改点,(0)表示没有选

如果有一个点选了,那么这个点的所有儿子都不能选

即:(dp[i][1]=sum_{jin son_i}dp[j][0]+a[i])

(dp[i][0]=sum_{jin son_i}max(dp[j][0],dp[j][1]))

例题五 无题

每个士兵可以守护所有与该结点直接相邻的边,请问在所有边都被守护的条件下,最少要安排多少士兵?

状态:(dp[i][0/1])表示以(i)为根的子树的所有点都被守护,(1)表示有士兵,(0)表示没有,此时的最少士兵

(f[i][0]=sum_{jin son_i}dp[i][1])

(dp[i][1]=sum_{jin son_i}max())

原文地址:https://www.cnblogs.com/juruohqk/p/11202634.html