go sync.map源码解析

go中的map是并发不安全的,同时多个协程读取不会出现问题,但是多个协程 同时读写就会出现 fatal error:concurrent map read and map write的错误。通用的解决办法如下:

1. 加锁

1.1 通用锁

import "sync"

type  SafeMap struct {

	data map[string]string

	lock sync.Mutex
}



func (this *SafeMap) get(key string) string{

	this.lock.Lock()

	defer this.lock.Unlock()

	return this.data[key]
}


func (this *SafeMap) set(key, value string) {

	this.lock.Lock()

	defer this.lock.Unlock()

	this.data[key] = value
}

  

1.2 读写锁

import "sync"

type  SafeMap struct {
	data map[string]string
	lock sync.RWMutex
}



func (this *SafeMap) get(key string) string{

	this.lock.RLock()

	defer this.lock.RUnlock()

	return this.data[key]
}



func (this *SafeMap) set(key, value string) {

	this.lock.Lock()

	defer this.lock.Unlock()

	this.data[key] = value
}

  

1.3 在go1.9之后,go引入了并发安全的map: sync.map

sync.map的原理可以概括为:

1. 通过read和dirty两个字段将读写分离,读的数据存在于read字段的,最新写的数据位于dirty字段上。

2. 读取时先查询read,不存在时查询dirty,写入时只写入dirty

3. 读取read不需要加锁,而读或写dirty需要加锁

4. 使用misses字段来统计read被穿透的次数,超过一定次数将数据从dirty同步到read上

5. 删除数据通过标记来延迟删除

sync.Map结构如下所示:

type Map struct {
	mu Mutex      //加锁,宝座dirty字段
	read atomic.Value // 只读数据,实例类型为 readOnly
	dirty map[interface{}]*entry  //最新写入的数据
	misses int    //read被穿透的次数
}

readOnly结构

type readOnly struct {
	m       map[interface{}]*entry
	amended bool // true if the dirty map contains some key not in m.
}

entery结构

type entry struct {
	// p == nil entry已经被删除且 dirty == nil
     // p == expunged entry已经被删除,但是dirty != nil且dirty中不存在该元素,这种情况出现于重建dirty时,将read复制到dirty中,复制的过程中将nil标记为expunged,不将其复制到dirty
    // 除此之外,entry存在于read中,如果dirty != nil则也存在于dirty中
p unsafe.Pointer // *interface{} }

Load()方法

func (m *Map) Load(key interface{}) (value interface{}, ok bool) {

     //首先尝试从read中读取 readOnly对象 read, _ := m.read.Load().(readOnly) e, ok := read.m[key]

     //如果不存在则尝试从dirty中读取 if !ok && read.amended { m.mu.Lock() //再读取一次read中内容,主要是用于防止上一步加锁过程中dirty map转换为read map导致dirty中读取不到数据 read, _ = m.read.Load().(readOnly) e, ok = read.m[key]
          //如果确实不存在,则从dirty中读取 if !ok && read.amended { e, ok = m.dirty[key] // 不管dirty中存不存在,都将miss + 1, 如果misses值等于dirty中元素个数,就会把dirty中元素迁移到read中 m.missLocked() } m.mu.Unlock() } if !ok { return nil, false } return e.load() }

Store()方法

// Store sets the value for a key.
func (m *Map) Store(key, value interface{}) {
    //直接再read中查找 read, _ := m.read.Load().(readOnly)
    //如果找到了,直接更新read中值,返回 if e, ok := read.m[key]; ok && e.tryStore(&value) { return }     //如不存在,去dirty中读 m.mu.Lock()
    //二次检测 read, _ = m.read.Load().(readOnly)
    //如果此时读到,read中不允许直接的添加删除值,此种情况说明加锁之前存在dirty升级为read的操作 if e, ok := read.m[key]; ok {
          //如果读到的值为expunged, 说明生成dirty时,复制read中的元素,对于nil的元素,搞成了expunged,所以意味着dirty不为nil,且dirty中没有该元素 if e.unexpungeLocked() { // The entry was previously expunged, which implies that there is a // non-nil dirty map and this entry is not in it.
              //更新dirty中的值 m.dirty[key] = e }
          //更新read中的值 e.storeLocked(&value)
      //此时,read中没有该元素,需要更新dirty中的值 } else if e, ok := m.dirty[key]; ok { e.storeLocked(&value) } else {
          // 如果 !read.amended, 说明dirty为nil, 需要将read map复制一份到dirty map if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked()
              //设置read.amended == true m.read.Store(readOnly{m: read.m, amended: true}) } m.dirty[key] = newEntry(value) } m.mu.Unlock() }

LoadOrStoce()

// LoadOrStore returns the existing value for the key if present.
// Otherwise, it stores and returns the given value.
// The loaded result is true if the value was loaded, false if stored.
func (m *Map) LoadOrStore(key, value interface{}) (actual interface{}, loaded bool) {
	// Avoid locking if it's a clean hit.
     //读取read中是否存在该key read, _ := m.read.Load().(readOnly) if e, ok := read.m[key]; ok {
          //如果存在(是否标识为删除由tryLoadOrStore处理),尝试获取该元素的值,或者将值写入 actual, loaded, ok := e.tryLoadOrStore(value) if ok { return actual, loaded } }      m.mu.Lock()
     //二次检测 read, _ = m.read.Load().(readOnly)
     //如果此时读到,read中不允许直接的添加删除值,此种情况说明加锁之前存在dirty升级为read的操作  if e, ok := read.m[key]; ok {
          //如果读到的值为expunged, 说明生成dirty时,复制read中的元素,对于nil的元素,搞成了expunged,所以意味着dirty不为nil,且dirty中没有该元素 if e.unexpungeLocked() { m.dirty[key] = e }
          //如果存在(是否标识为删除由tryLoadOrStore处理),尝试获取该元素的值,或者将值写入 actual, loaded, _ = e.tryLoadOrStore(value)
      // 此时,read中没有元素,需要 tryLoadOrStore dirty中值 } else if e, ok := m.dirty[key]; ok { actual, loaded, _ = e.tryLoadOrStore(value) m.missLocked() } else {
          // 如果 !read.amended, 说明dirty为nil, 需要将read map复制一份到dirty map if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked() m.read.Store(readOnly{m: read.m, amended: true}) }
          // 将值写入dirty中 m.dirty[key] = newEntry(value) actual, loaded = value, false } m.mu.Unlock() return actual, loaded }
// tryLoadOrStore atomically loads or stores a value if the entry is not
// expunged.
//
// If the entry is expunged, tryLoadOrStore leaves the entry unchanged and
// returns with ok==false.
// 如果元素是 expunged, tryLoadOrStore 保持entry不变并直接返回false
func (e *entry) tryLoadOrStore(i interface{}) (actual interface{}, loaded, ok bool) {
   p := atomic.LoadPointer(&e.p)
  // 标识删除,直接返回
   if p == expunged {
      return nil, false, false
   }
  // 如果元素存在真实值,则直接返回该真实值
   if p != nil {
      return *(*interface{})(p), true, true
   }

   // Copy the interface after the first load to make this method more amenable
   // to escape analysis: if we hit the "load" path or the entry is expunged, we
   // shouldn't bother heap-allocating.
  // 如果 p == nil, 则更新该元素值
   ic := i
   for {
      if atomic.CompareAndSwapPointer(&e.p, nil, unsafe.Pointer(&ic)) {
         return i, false, true
      }
      p = atomic.LoadPointer(&e.p)
      if p == expunged {
         return nil, false, false
      }
      if p != nil {
         return *(*interface{})(p), true, true
      }
   }
}

  

Delete()方法

// Delete deletes the value for a key.
func (m *Map) Delete(key interface{}) {
     // 检查read中是否存在 read, _ := m.read.Load().(readOnly) e, ok := read.m[key]
     // 如果不存在,并且dirty中存在元素 if !ok && read.amended { m.mu.Lock()
          // 二次检测 read, _ = m.read.Load().(readOnly) e, ok = read.m[key] if !ok && read.amended {
              // dirty中删除 delete(m.dirty, key) } m.mu.Unlock() } if ok {
          // 如果存在,直接删除 e.delete() } } func (e *entry) delete() (hadValue bool) { for { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged { return false } if atomic.CompareAndSwapPointer(&e.p, p, nil) { return true } } }

Range()方法

// Range calls f sequentially for each key and value present in the map.
// If f returns false, range stops the iteration.
//
// Range does not necessarily correspond to any consistent snapshot of the Map's
// contents: no key will be visited more than once, but if the value for any key
// is stored or deleted concurrently, Range may reflect any mapping for that key
// from any point during the Range call.
//
// Range may be O(N) with the number of elements in the map even if f returns
// false after a constant number of calls.
func (m *Map) Range(f func(key, value interface{}) bool) {
	// We need to be able to iterate over all of the keys that were already
	// present at the start of the call to Range.
	// If read.amended is false, then read.m satisfies that property without
	// requiring us to hold m.mu for a long time.
	read, _ := m.read.Load().(readOnly)
     // 如果 amended == true, 说明dirty中存在元素,且包含所有有效元素,此时,使用dirty map
	if read.amended {
		// m.dirty contains keys not in read.m. Fortunately, Range is already O(N)
		// (assuming the caller does not break out early), so a call to Range
		// amortizes an entire copy of the map: we can promote the dirty copy
		// immediately!
		m.mu.Lock()    
		read, _ = m.read.Load().(readOnly)
		if read.amended {
//使用dirty map并将其升级为 read map read = readOnly{m: m.dirty} m.read.Store(read) m.dirty = nil m.misses = 0 } m.mu.Unlock() }      // 使用read map读 for k, e := range read.m { v, ok := e.load()
          // 被删除的不计入 if !ok { continue } if !f(k, v) { break } } }

 

当sync.Map中存在大量写操作的情况下,会导致read中读不到数据,依然会频繁加锁,同时dirty升级为read,整体性能就会很低,所以sync.Map更加适合大量读、少量写的场景。

原文地址:https://www.cnblogs.com/juanmaofeifei/p/14155817.html