STL源码剖析(四)

functors

仿函数(functor),就是使一个类的使用看上去像一个函数。其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了。

在STL中,将仿函数主要分为了三大类:算术类(Arithmetic)、逻辑运算类(Logical)和相对关系类(Relational)。

算术类(Arithmetic)举例

template <class T>
struct plus : public binary_function<T, T, T>
{
    T operator()(const T& x, const T& y) const
    { return x + y; }
};

template <class T>
struct minus : public binary_function<T, T, T>
{
    T operator()(const T& x, const T& y) const
    { return x - y; }
};

...

逻辑运算类(Logical)举例

template <class T>
struct logical_and : public binary_function<T, T, bool>
{
    bool operator()(const T& x, const T& y) const
    { return x && y; }
};

...

相对关系类(Relational)

template <class T>
struct equal_to : public binary_function<T, T, bool>
{
    bool operator()(const T& x, const T& y) const
    { return x == y; }
};

template <class T>
struct less : public binary_function<T, T, bool>
{
    bool operator()(const T& x, const T& y) const
    { return x < y; }
};

...

通过上面的代码可以发现,functors都继承了一个基类。STL规定每个 Adaptable Function 都应该挑选合适的父类继承,因为 Adaptable Function 将会提问一些问题。

template <class Arg, class Result>
struct unary_function
{
    typedef Arg argument_type;
    typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function
{
    typedef Arg1 first_argument_type;
    typedef Arg2 second_argument_type;
    typedef Result result_type;
};

比如上面的less通过继承binary_function拥有了3个typedef,这些typedef可能会在一些适配器中被询问到,详见后面适配器中的源码。

Adapters

Adapters 相当于一种修饰的作用,在容器、迭代器和仿函数的基础上,对其进行一种改造。将改造完成后的容器、迭代器或仿函数交给用户使用,但其核心还是通过内部的容器、迭代器和仿函数进行工作。所以就存在: Container Adapters, Iterator Adapters 和 Functor Adapters三类。

容器适配器:stack, queue

stack

template <class T, class Sequence=deque<T>>
class stack{
...
public:
    typedef typename Sequence::value_type value_type;
    typedef typename Sequence::size_type size_type;
    typedef typename Sequence::reference reference;
    typedef typename Sequence::const_reference const_reference;
proctected:
    Sequence c;// 底层容器
public:
    bool empty() const { return c.empty(); }
    size_type size() const { return c.size(); }
    reference top() { return c.back(); }
    const_reference top const { return c.back(); }
    void push(const value_type& x) { c.push_back(x); }
    void pop { c.pop_back(); }
};

queue

template <class T, class Sequence=deque<T>>
class queue{
...
public:
    typedef typename Sequence::value_type value_type;
    typedef typename Sequence::size_type size_type;
    typedef typename Sequence::reference reference;
    typedef typename Sequence::const_reference const_reference;
proctected:
    Sequence c;// 底层容器
public:
    bool empty() const { return c.empty(); }
    size_type size() const { return c.size(); }
    reference front() { return c.front(); }
    const_reference front() const { return c.front(); }
    reference back() { return c.back(); }
    const_reference back() const { return c.bakc(); }
    void push(const value_tyoe& x) { c.push_back(x); }
    void pop { c.pop_back(); }
};

函数适配器:binder2nd, not1

对于这样一行语句:

cout << count_if(vi.begin(), vi.end(), not1(bind2nd(less<int>(), 40));

首先需要注意的是less<int>()这并不是函数的调用,而是生成一个less<int>的对象!

count_if

template <class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type 
count_if(InputIterator first, 
         InputIterator last, 
         Predicate pred){
    typename iterator_traits<InputIterator>::difference_type n = 0;
    for(; first != last; ++first)
        if(pred(*first))
            ++n;
    return n;
}

bind2nd

template <class Operation, class T>
inline binder2nd<Operation> bind2nd(const Operation& op,const T& x)
{
    typedef typename Operator::second_argument_type arg2_type;
    return binder2nd<Operation>(op, arg2_type(x));//返回一个binder2nd<Operation>对象!
}

binder2nd

template <class Operation>
class binder2nd : public unary_function<typename Operation::first_argument_type,
                                        typename Operation::result_type>
{
protected:
    Operation op;
    typename Operation::second_argument_type value;
public:
    binder2nd(const Operation& x,const typename Operation::second_argument_type& y): op(x), value(y){}
    typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const
    {
        return op(x,value);//这里才是函数的调用
    }
};

在这些代码中可以看到适配器在询问仿函数一些问题,这些问题就是仿函数继承的基类中的typedef。所有能回答出这些问题的仿函数都称为 Adaptable Function

not1

template <class Predicate>
inline unary_negate<Predicate> not1(consat Predicate& pred)
{
    return unary_negate<Predicate>(pred);
}

template <class Predicate>
class unary_negate : public unart_function<typename Predicate::argument_type, bool>
{
protected:
    Predicate pred;
public:
    eplicit unary_negate(const Predicate& x) : pred(x) {}
    bool operator()(const typename Predicate::argument_type& x) const
    {
        return !pred(x);
    }
};

新型适配器,bind

bind 使用例子(摘自cplusplus网站)

#include <iostream>     // std::cout
#include <functional>   // std::bind

// a function: (also works with function object: std::divides<double> my_divide;)
double my_divide (double x, double y) {return x/y;}

struct MyPair {
  double a,b;
  double multiply() {return a*b;}
};

int main () {
  using namespace std::placeholders;    // adds visibility of _1, _2, _3,...

  // binding functions:
  auto fn_five = std::bind (my_divide,10,2);               // returns 10/2
  std::cout << fn_five() << '
';                          // 5

  auto fn_half = std::bind (my_divide,_1,2);               // returns x/2
  std::cout << fn_half(10) << '
';                        // 5

  auto fn_invert = std::bind (my_divide,_2,_1);            // returns y/x
  std::cout << fn_invert(10,2) << '
';                    // 0.2

  auto fn_rounding = std::bind<int> (my_divide,_1,_2);     // returns int(x/y)
  std::cout << fn_rounding(10,3) << '
';                  // 3

  MyPair ten_two {10,2};

  // binding members: member function 其实有个 argument: this
  auto bound_member_fn = std::bind (&MyPair::multiply,_1); // returns x.multiply()
  std::cout << bound_member_fn(ten_two) << '
';           // 20

  auto bound_member_data = std::bind (&MyPair::a,ten_two); // returns ten_two.a
  std::cout << bound_member_data() << '
';                // 10

  return 0;
}

std::bind 可以绑定:

  1. functions
  2. function objects
  3. member functions, _1 必须是某个object地址
  4. data members, _ 必须是某个object地址

所以可以现在可以用bind替换bind2nd,改写如下:

vector<int> v {15,37,94,50,73,58,28,98};
int n = count_if(v.cbegin(), v.cend(), not1(bind2nd(less<int>, 50)));
cout << "n=" << n << endl;//5

vector<int> v {15,37,94,50,73,58,28,98};
int n = count_if(v.cbegin(), v.cend(), not1(bind(less<int>, _1, 50)));
cout << "n=" << n << endl;//5

迭代器适配器 reverse_iterator, inserter

reverse_iterator:用来实现去反向指针rbegin(), rend()的实现。

reverse_iterator rbegin() { return reverse_iterator(end()); }

reverse_iterator rend() { returun reverse_iterator(begin()); }

template <class Iterator>
class reverse_iterator
{
protected:
    Iterator current;//对应的正向迭代器
public:
    //逆向迭代器的5中 associated types 都和对应的正向迭代器相同
    typedef typename iterator_traits<Iterator>::iterator_category iterator_category;
    typedef typename iterator_traits<Iterator>::value_type value_type;
    ...
    typedef Iterator iterator_type;        //  表示正向迭代器
    typedef reverse_iterator<Iterator> self;//  表示反向迭代器
public:
    explicit reverse_iterator(iterator_type x) : current(x) {}
    reverse_iterator(const self& x) : current(x.current) {}
    iterator_type base() const { return current; }
    reference operator*() const 
    { //关键所在! 对于逆向迭代器的取值,就是将正向的迭代器退一位取值。
        Iterator tmp = current; 
        return *--tmp; 
    }
    pointer operator->() const { return &(operator*()); }

    //前进便后退,后退便前进
    self& operator++() { --current; return *this; }
    self& operator--() { ++current; return *this; }
    slef operator+(difference_type n) const { return self(current - n); }
    slef operator-(difference_type n) const { return self(current + n); }
};

inserter: 将iteartor中的复制操作改为插入操作,并且将iteartor右移一个位子。可以让用户执行表面上assign而实际上insert的行为。

template <class Container>
class insert_iterator
{
protected:
    Container* container;
    typename Container::iterator iter;
pbulic:
    typedef output_iterator_tag iterator_category;
    insert_iterator(Container& x, typename Container::iterator i) : container(&x), iter(i) {}
    //对赋值操作符重载,以实现插入
    insert_iterator<Contain>& operator=(const typename Container::value_type& value)
    {
        iter = container->insert(iter, value);
        ++iter;
        return *thisl
    }
};

//辅助函数,帮助用户使用insert_iterator
template <class Container, class Iterator>
inline insert_iterator<Container> inserter(Container& x, Iterator i)
{
    typedef typename Container::iterator iter;
    return insert_iterator<Container>(x, iter(i));
}

特殊适配器 ostream_iterator, istream_iterator

ostream_iterator

先来看一个例子

#include <iostream>     //std::cout
#include <iterator>     //std::ostream_iterator
#include <vector>       //std::vector
#include <algorithm>    //std::copy

int main()
{
	std::vector<int> myvector;
	for (int i = 1; i < 10; ++i) myvector.push_back(i * 10);

	std::ostream_iterator<int> out_it(std::cout, ",");
	std::copy(myvector.begin(), muvector.end(), out_it);
	return 0;
}

输出结果:

10,20,30,40,50,60,70,80,90,

首先来看看copy这个函数做了什么

template<class InputIterator first, InputIterator last,OutputIterator result>
copy(InputIterator first,InputIterator last, OutputIterator result)
{
    while(first != last)
    {
        *result = *first;
        ++result;
        ++first;
    }
}

再对比着ostream_iterator的源码,就能分析出输出的原因:

template<class T,class chatT=char,class traits=char_traits<charT>>
class ostream_iterator:public iterator<output_iterator_tag,void,void,void,void>
{
    basic_ostream<charT,traits>* out_stream;
    const charT* delim;
public:
    typedef charT char_type;
    typedef traits traits_type;
    typedef basic_ostream<charT,traits> ostream_type;
    ostream_iterator(ostream_type& s):out_stream(&s),delim(0){}
    ostream_iterator(onstream_type&s, const charT* delimiter):out_stream(&s),delim(delimiter){}
    ostream_iterator(const ostream_iterator<T,charT,traits>& x):ostream_iterator(x.out_stream),delim(x.delim){}
    ~ostream_iterator(){}
    ostream_iterator<T,chatT,traits>& operator=(const T& value){//关键点!!
        *out_stream << value;
        if(delim!=0) 
            *out_stream << delim;
        return *this;
    }

    ostream_iterator<T,charT,traits>& operator*(){return *this;}
    ostream_iterator<T,charT,traits>& operator++(){return *this;}
    ostream_iterator<T,charT,traits>& operator++(int){return *this;}
};

关键就在于重载了=号运算符。

istream_iterator

还是先看一个例子

#include <iostream>
#include <iterator>

int main()
{
	double value1, value2;
	std::cout << "Please, insert two values:";
	std::istream_iterator<double> eos;
	std::istream_iterator<double> iit(std::cin);//当创建对象时,就已经在要求输入了
	if (iit != eos)
		value1 = *iit;
	++iit;
	if (iit != eos)
		value2 = *iit;
	std::cout << value1 << "*" << value2 << "=" << (value1*value2) << "
";
	return 0;
}

这个例子就是一个简单的乘法,其中std::istream_iterator<double> iit(std::cin);相当于cin >> value;。具体的原理还是看源码吧。

template <class T, class charT = char, class traits = char_traits<charT>>, class Distance = ptrdiff_t >
class istream_iterator : public iterator<input_iterator_tag, T, Distance, const T*, const T&>
{
	basic_istream<charT, traits>* instream;
	T value;
public:
	typedef charT char_type;
	typedef traits traits_type;
	typedef basic_istream<charT, traits> istream_type;
	istream_iterator() :instream(0) {}
	istream_iterator(istream_type& s) :in_stream(&s) { ++*this; }
	istream_iterator(const istream_iterator) < T, charT, traits, Distance > & x):in_stream(x.in_stream), value(x.value){}
	~istream_itetator() {}
	const T& operator*() const { return value; }
	const T* operator->() const { return value; }
	istream_iterator<T, charT, traits, Distance>& operator++() {
		if (in_stream && !(*in_stream >> value))
			in_stream = 0;
		return *this;
	}
	istream_iterator<T,charT,traits,Distance>operator++(int) {
		istream_iterator<T, charT, traits, Distance> tmp = *this;
		++*this;
		return tmp;
	}
};

对照源码可以发现,std::istream_iterator<double> iit(std::cin);这里调用了istream_iterator的++符号,此时就已经开始输入了。

原文地址:https://www.cnblogs.com/joker-wz/p/10299617.html