微积分学习笔记二

1、罗尔中值定理:设函数y=f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),那么在(a,b)内至少存在一点ξ,使得

[f^{^{'}}left (varepsilon ight )=0]

证明:因为连续,所以在[a,b]上存在最大最小值,设为M,m。

(1)若M=m,则f(x)为定值,所以导数恒为0。

(2)否则,由于f(a)=f(b),所以M和m不可能都在端点处取得。设f(c)=M,c∈(a,b)。因为f(c)=M是最大值,所以对$Delta x eq 0$有

[fleft(c+Delta x ight )-fleft(c ight )leq 0,c+Delta x in left(a,b ight )]

所以,当$Delta x>0$时,

[frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}leq0]

因为导数存在,所以

[f^{^{'}}left(c ight )=lim_{Delta x ightarrow 0^{^{+}}}frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}leq0]

同理$Delta x<0$时

[f^{^{'}}left(c ight )=lim_{Delta x ightarrow 0^{^{-}}}frac{fleft(c+Delta x ight )-fleft(c ight )}{Delta x}geq 0]

所以$f^{^{'}}left(c ight )=0$。因此可取ξ=c。


2、拉格朗日中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,满足

[f^{^{'}}left(xi ight )=frac{fleft(b ight )-fleft(a ight )}{b-a}]

证明:定义函数$varphi (x)$,

$varphi left(x ight )=fleft(x ight )-[fleft(a ight )+frac{f(b)-f(a)}{b-a}(x-a) ]$


那么有$varphi (a)$=$varphi (b)$=0,由罗尔定理,(a,b)存在一点ξ使得$varphi^{^{'}} left(xi ight )=0$,即


[varphi^{^{'}} left(xi ight )=f^{^{'}}left(xi ight )-frac{fleft(b ight )-fleft(a ight )}{b-a}=0]

所以[f^{^{'}}left(xi ight )=frac{fleft(b ight )-fleft(a ight )}{b-a}]

3、柯西中值定理:设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且$g^{^{'}}left(x ight ) eq0 (a<x<b)$,则在(a,b)内存在一点ξ,满足

[frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(a,b)]

证明:由于$g^{^{'}}left(x ight ) eq0(a<x<b )$,所以g(a)!=g(b)。否则与罗尔定理矛盾。定义函数$varphi (x)$,

$varphi (x)=f(x)-[fleft(a ight )+frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )} [g(x)-g(a) ]]$


由于$varphi (a)$=$varphi (b)$=0,所以根据罗尔定理,在(a,b)内存在ξ,使得

[varphi^{^{'}} left(xi ight )=f^{^{'}}left(xi ight )-frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}g^{^{'}}left(xi ight )=0]



[frac{fleft(b ight )-fleft(a ight )}{gleft(b ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(a,b)]

4、洛必达法则1:设函数f(x),g(x)满足条件:

$(1)lim_{x ightarrow a }fleft(x ight )=0,lim_{x ightarrow a }gleft(x ight )=0$

(2)在点a的某邻域内(a可除外)可导,且$g^{^{'}}left(x ight ) eq0$

$(3)lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

那么

$lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

证明:若f(x) 和g(x)在a处连续,那么f(a)=g(a)=0,否则我们可以人为定义f(a)=g(a)=0,使得f(x)和g(x)在a处连续。设x为a附近一点,那么在以x和a为端点的区间上,f(x)和g(x)满足柯西中值定理,所以在(x,a)之间存在ξ,使得

[frac{fleft(x ight )}{gleft(x ight )}=frac{fleft(x ight )-fleft(a ight )}{gleft(x ight )-gleft(a ight )}=frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )},xiin(x,a)]

所以当x->a时,ξ->a,求极限得:

$lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{xi ightarrow a}frac{f^{^{'}}left(xi ight )}{g^{^{'}}left(xi ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}$

5、洛必达法则2:设函数f(x),g(x)满足条件:

$(1)lim_{x ightarrow a }fleft(x ight )=oo,lim_{x ightarrow a }gleft(x ight )=oo$

(2)在点a的某邻域内(a可除外)可导,且$g^{^{'}}left(x ight ) eq0$

$(3)lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)

那么

$lim_{x ightarrow a}frac{fleft(x ight )}{gleft(x ight )}=lim_{x ightarrow a}frac{f^{^{'}}left(x ight )}{g^{^{'}}left(x ight )}=A$(或者oo)


原文地址:https://www.cnblogs.com/jianglangcaijin/p/6035842.html