Spark Storage(一) 集群下的区块管理

Storage模块

在Spark中提及最多的是RDD,而RDD所交互的数据是通过Storage来实现和管理

Storage模块整体架构

1. 存储层

在Spark里,单节点的Storage的管理是通过block来管理的,每个Block的存储可以在内存里或者在磁盘中,在BlockManager里既可以管理内存的存储,同时也管理硬盘的存储,存储的标识是通过块的ID来区分的。
 

2. 集群下的架构

2.1 架构

在集群下Spark的Block的管理架构使用Master-Slave模式
  • Master : 拥有所有block的具体信息(本地和Slave节点)
  • Slave : 通过master获取block的信息,并且汇报自己的信息
这里的Master并不是Spark集群中分配任务的Master,而是提交task的客户端Driver,这里并没有主备设计,因为Driver client是单点的,通常Driver client crash了,计算也没有结果了,在Storage 的集群管理中Master是由driver承担。
 
Executor在运行task的时候,通过blockManager获取本地的block块,如果本地找不到,尝试通过master去获取远端的块
for (pid <- Random.shuffle(Seq.range(0, numBlocks))) {  
     val pieceId = BroadcastBlockId(id, "piece" + pid)  
     logDebug(s"Reading piece $pieceId of $broadcastId")  
     // First try getLocalBytes because there is a chance that previous attempts to fetch the  
     // broadcast blocks have already fetched some of the blocks. In that case, some blocks  
     // would be available locally (on this executor).  
     bm.getLocalBytes(pieceId) match {  
       case Some(block) =>  
         blocks(pid) = block  
         releaseLock(pieceId)  
       case None =>  
         bm.getRemoteBytes(pieceId) match {  
           case Some(b) =>  
             if (checksumEnabled) {  
               val sum = calcChecksum(b.chunks(0))  
               if (sum != checksums(pid)) {  
                 throw new SparkException(s"corrupt remote block $pieceId of $broadcastId:" +  
                   s" $sum != ${checksums(pid)}")  
               }  
             }  
             // We found the block from remote executors/driver's BlockManager, so put the block  
             // in this executor's BlockManager.  
             if (!bm.putBytes(pieceId, b, StorageLevel.MEMORY_AND_DISK_SER, tellMaster = true)) {  
               throw new SparkException(  
                 s"Failed to store $pieceId of $broadcastId in local BlockManager")  
             }  
             blocks(pid) = b  
           case None =>  
             throw new SparkException(s"Failed to get $pieceId of $broadcastId")  
         }  
     }  
   }  

2.2 Executor获取块内容的位置

 
唯一的blockID: 
broadcast_0_piece0
请求Master获取该BlockID所在的 Location,也就是BlockManagerId的集合
/** Get locations of the blockId from the driver */  
  def getLocations(blockId: BlockId): Seq[BlockManagerId] = {  
    driverEndpoint.askWithRetry[Seq[BlockManagerId]](GetLocations(blockId))  
  }  
唯一的BlockManagerId

BlockManagerId(driver, 192.168.121.101, 55153, None)

Executor ID, executor ID, 对driver来说就是driver
Host: executor/driver IP
Port:    executor/driver Port
 
每一个executor, 和driver 都生成唯一的BlockManagerId

2.3 Executor获取块的内容

def getRemoteBytes(blockId: BlockId): Option[ChunkedByteBuffer] = {  
    logDebug(s"Getting remote block $blockId")  
    require(blockId != null, "BlockId is null")  
    var runningFailureCount = 0  
    var totalFailureCount = 0  
    val locations = getLocations(blockId)  
    val maxFetchFailures = locations.size  
    var locationIterator = locations.iterator  
    while (locationIterator.hasNext) {  
      val loc = locationIterator.next()  
      logDebug(s"Getting remote block $blockId from $loc")  
      val data = try {  
        blockTransferService.fetchBlockSync(  
          loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()  
      } catch {  
        case NonFatal(e) =>  
          runningFailureCount += 1  
          totalFailureCount += 1  
  
          if (totalFailureCount >= maxFetchFailures) {  
            // Give up trying anymore locations. Either we've tried all of the original locations,  
            // or we've refreshed the list of locations from the master, and have still  
            // hit failures after trying locations from the refreshed list.  
            logWarning(s"Failed to fetch block after $totalFailureCount fetch failures. " +  
              s"Most recent failure cause:", e)  
            return None  
          }  
  
          logWarning(s"Failed to fetch remote block $blockId " +  
            s"from $loc (failed attempt $runningFailureCount)", e)  
  
          // If there is a large number of executors then locations list can contain a  
          // large number of stale entries causing a large number of retries that may  
          // take a significant amount of time. To get rid of these stale entries  
          // we refresh the block locations after a certain number of fetch failures  
          if (runningFailureCount >= maxFailuresBeforeLocationRefresh) {  
            locationIterator = getLocations(blockId).iterator  
            logDebug(s"Refreshed locations from the driver " +  
              s"after ${runningFailureCount} fetch failures.")  
            runningFailureCount = 0  
          }  
  
          // This location failed, so we retry fetch from a different one by returning null here  
          null  
      }  
  
      if (data != null) {  
        return Some(new ChunkedByteBuffer(data))  
      }  
      logDebug(s"The value of block $blockId is null")  
    }  
    logDebug(s"Block $blockId not found")  
    None  
  }  

通过获取的BlockManagerId的集合列表,顺序的从列表中取出一个拥有该Block的服务器,通过

blockTransferService.fetchBlockSync(  
          loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer() 
同步的获取块的内容,如果该块不存在,则换下一个拥有该Block的服务器

2.4 BlockManager注册

Driver 初始化SparkContext.init 的时候,会初始化BlockManager.initialize
val idFromMaster = master.registerBlockManager(  
      id,  
      maxMemory,  
      slaveEndpoint)  

会通过master 注册BlockManager

def registerBlockManager(  
    blockManagerId: BlockManagerId,  
    maxMemSize: Long,  
    slaveEndpoint: RpcEndpointRef): BlockManagerId = {  
  logInfo(s"Registering BlockManager $blockManagerId")  
  val updatedId = driverEndpoint.askWithRetry[BlockManagerId](  
    RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint))  
  logInfo(s"Registered BlockManager $updatedId")  
  updatedId  
}  
在BlockManagerMaster里,我们看到了endpoint是强制的driver,也就是默认是driver 是master
无论driver,还是executor都是初始化后BlockManager,发消息给driver master进行注册,唯一不同的是driver标识自己的ID是driver,而executor是按照executor id来标识自己的

2.5 Driver Master的endpoint

前面一节已经介绍过无论driver还是executor 都会发送消息到Driver的Master,在Driver 和Executor里SparkEnv.create的时候会初始化BlockManagerMaster
val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(  
      BlockManagerMaster.DRIVER_ENDPOINT_NAME,  
      new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),  
      conf, isDriver)  

注册一个lookup的endpoint

def registerOrLookupEndpoint(  
        name: String, endpointCreator: => RpcEndpoint):  
      RpcEndpointRef = {  
      if (isDriver) {  
        logInfo("Registering " + name)  
        rpcEnv.setupEndpoint(name, endpointCreator)  
      } else {  
        RpcUtils.makeDriverRef(name, conf, rpcEnv)  
      }  
    }  

代码中可以看到只有isDriver的时候才会setup一个rpc的endpoint,默认是netty的rpc环境,命名为:BlockManagerMaster

spark://BlockManagerMaster@192.168.121.101:40978  
所有的driver, executor都会向master 40978发消息

2.6 Master和Executor消息格式

下面的代码每个case都是master和executor的消息格式
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {  
    case RegisterBlockManager(blockManagerId, maxMemSize, slaveEndpoint) =>  
      context.reply(register(blockManagerId, maxMemSize, slaveEndpoint))  
  
    case _updateBlockInfo @  
        UpdateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size) =>  
      context.reply(updateBlockInfo(blockManagerId, blockId, storageLevel, deserializedSize, size))  
      listenerBus.post(SparkListenerBlockUpdated(BlockUpdatedInfo(_updateBlockInfo)))  
  
    case GetLocations(blockId) =>  
      context.reply(getLocations(blockId))  
  
    case GetLocationsMultipleBlockIds(blockIds) =>  
      context.reply(getLocationsMultipleBlockIds(blockIds))  
  
    case GetPeers(blockManagerId) =>  
      context.reply(getPeers(blockManagerId))  
  
    case GetExecutorEndpointRef(executorId) =>  
      context.reply(getExecutorEndpointRef(executorId))  
  
    case GetMemoryStatus =>  
      context.reply(memoryStatus)  
  
    case GetStorageStatus =>  
      context.reply(storageStatus)  
  
    case GetBlockStatus(blockId, askSlaves) =>  
      context.reply(blockStatus(blockId, askSlaves))  
  
    case GetMatchingBlockIds(filter, askSlaves) =>  
      context.reply(getMatchingBlockIds(filter, askSlaves))  
  
    case RemoveRdd(rddId) =>  
      context.reply(removeRdd(rddId))  
  
    case RemoveShuffle(shuffleId) =>  
      context.reply(removeShuffle(shuffleId))  
  
    case RemoveBroadcast(broadcastId, removeFromDriver) =>  
      context.reply(removeBroadcast(broadcastId, removeFromDriver))  
  
    case RemoveBlock(blockId) =>  
      removeBlockFromWorkers(blockId)  
      context.reply(true)  
  
    case RemoveExecutor(execId) =>  
      removeExecutor(execId)  
      context.reply(true)  
  
    case StopBlockManagerMaster =>  
      context.reply(true)  
      stop()  
  
    case BlockManagerHeartbeat(blockManagerId) =>  
      context.reply(heartbeatReceived(blockManagerId))  
  
    case HasCachedBlocks(executorId) =>  
      blockManagerIdByExecutor.get(executorId) match {  
        case Some(bm) =>  
          if (blockManagerInfo.contains(bm)) {  
            val bmInfo = blockManagerInfo(bm)  
            context.reply(bmInfo.cachedBlocks.nonEmpty)  
          } else {  
            context.reply(false)  
          }  
        case None => context.reply(false)  
      }  
  }  

2.7 Master结构关系



在Master上会保存每一个executor所对应的BlockManagerID和BlockManagerInfo,而在BlockManagerInfo中保存了每个block的状态
Executor通过心跳主动汇报自己的状态,Master更新EndPoint中Executor的状态
Executor 中的block的状态更新也会汇报给Master,只是跟新Master状态,但不会通知其他的Executor
 
在Executor和Master交互中是Executor主动推和获取数据的,Master只是管理executor的状态,以及Block的所在的Driver、Executor的位置及其状态,负载较小,Master没有考虑可用性,通常Master节点就是提交任务的Driver的节点。
 
原文地址:https://www.cnblogs.com/itboys/p/9214467.html