Spark RDD的依赖解读

在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型

  • 窄依赖(Narrow Dependency)
  • 宽依赖(Wide Dependency)

以下图说明RDD的窄依赖和宽依赖


【Spark】Spark九: 深入Spark RDD第二部分RDD依赖与运行时

窄依赖

窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为

  • 一个父RDD的分区对应于一个子RDD的分区
  • 两个父RDD的分区对应于一个子RDD 的分区。

如上面的map,filter,union属于第一类窄依赖,而join with inputs co-partitioned(对输入进行协同划分的join操作,也就是说先按照key分组然后shuffle write的时候一个父分区对应一个子分区)则为第二类窄依赖

如果有多个父RDD的分区对应于同一个子RDD的分区不能称之为窄依赖?

宽窄依赖与容错性

Spark基于lineage的容错性是指,如果一个RDD出错,那么可以从它的所有父RDD重新计算所得,如果一个RDD仅有一个父RDD(即窄依赖),那么这种重新计算的代价会非常小。

Spark基于Checkpoint(物化)的容错机制何解?在上图中,宽依赖得到的结果(经历过Shuffle过程)是很昂贵的,因此,Spark将此结果物化到磁盘上了,以备后面使用

宽依赖

宽依赖指子RDD的每个分区都要依赖于父RDD的所有分区,这是shuffle类操作,上图中的groupByKey和对输入未协同划分的join操作就是宽依赖。

窄依赖细说

窄依赖对优化很有利。逻辑上,每个RDD的算子都是一个fork/join(此join非上文的join算子,而是指同步多个并行任务的barrier): 把计算fork到每个分区,算完后join,然后fork/join下一个RDD的算子。如果直接翻译到物理实现,是很不经济的:一是每一个RDD(即使 是中间结果)都需要物化到内存或存储中,费时费空间;二是join作为全局的barrier,是很昂贵的,会被最慢的那个节点拖死。如果子RDD的分区到 父RDD的分区是窄依赖,就可以实施经典的fusion优化,把两个fork/join合为一个;如果连续的变换算子序列都是窄依赖,就可以把很多个 fork/join并为一个,不但减少了大量的全局barrier,而且无需物化很多中间结果RDD,这将极大地提升性能。Spark把这个叫做流水线 (pipeline)优化。

Spark流水线优化:

 
【Spark】Spark九: 深入Spark RDD第二部分RDD依赖与运行时

宽依赖细说

变换算子序列一碰上shuffle类操作,宽依赖就发生了,流水线优化终止。在具体实现 中,DAGScheduler从当前算子往前回溯依赖图,一碰到宽依赖,就生成一个stage来容纳已遍历的算子序列。在这个stage里,可以安全地实施流水线优化。然后,又从那个宽依赖开始继续回溯,生成下一个stage。

分区划分规则与首选位置

要深究两个问题:一,分区如何划分;二,分区该放到集群内哪个节点。这正好对应于RDD结构中另外两个域:分区划分器(partitioner)和首选位置(preferred locations)。

分区划分

分区划分对于shuffle类操作很关键,它决定了该操作的父RDD和子RDD之间的依赖类型。上文提到,同一个join算子,如果协同划分的话,两个父 RDD之间、父RDD与子RDD之间能形成一致的分区安排,即同一个key保证被映射到同一个分区,这样就能形成窄依赖。反之,如果没有协同划分,导致宽依赖。

所谓协同划分,就是指定分区划分器以产生前后一致的分区安排。Pregel和HaLoop把这个作为系统内置的一部分;而Spark 默认提供两种划分器:HashPartitioner和RangePartitioner,允许程序通过partitionBy算子指定。注意,HashPartitioner能够发挥作用,要求key的hashCode是有效的,即同样内容的key产生同样的hashCode。这对 String是成立的,但对数组就不成立(因为数组的hashCode是由它的标识,而非内容,生成)。这种情况下,Spark允许用户自定义 ArrayHashPartitioner。

首选位置

第二个问题是分区放置的节点,这关乎数据本地性:本地性好,网络通信就少。有些RDD产生时就 有首选位置,如HadoopRDD分区的首选位置就是HDFS块所在的节点。有些RDD或分区被缓存了,那计算就应该送到缓存分区所在的节点进行。再不然,就回溯RDD的lineage一直找到具有首选位置属性的父RDD,并据此决定子RDD的放置。

宽/窄依赖的概念不止用在调度中,对容错也很有用。如果一个节点宕机了,而且运算是窄依赖,那只要把丢失的父RDD分区重算即可,跟其他节点没有依赖。而宽依赖需要父RDD的所有分区都存在, 重算就很昂贵了。所以如果使用checkpoint算子来做检查点,不仅要考虑lineage是否足够长,也要考虑是否有宽依赖,对宽依赖加检查点是最物有所值的。

Spark中关于Dependency的源代码

package org.apache.spark

import scala.reflect.ClassTag

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.rdd.RDD
import org.apache.spark.serializer.Serializer
import org.apache.spark.shuffle.ShuffleHandle

/**
 * :: DeveloperApi ::
 * Base class for dependencies.
 */
@DeveloperApi
abstract class Dependency[T] extends Serializable {
  def rdd: RDD[T]
}


/**
 * :: DeveloperApi ::
 * Base class for dependencies where each partition of the child RDD depends on a small number
 * of partitions of the parent RDD. Narrow dependencies allow for pipelined execution.
 */
//这里是说,窄依赖是指子RDD的每个Partition只依赖于父RDD很少部分的的RDD,文档明显说的不对!窄依赖起码需要父RDD的每个Partition只被一个子RDD的Partition依赖
@DeveloperApi abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] { /** * Get the parent partitions for a child partition. * @param partitionId a partition of the child RDD * @return the partitions of the parent RDD that the child partition depends upon */ def getParents(partitionId: Int): Seq[Int] override def rdd: RDD[T] = _rdd } /** * :: DeveloperApi :: * Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle, * the RDD is transient since we don't need it on the executor side. * * @param _rdd the parent RDD * @param partitioner partitioner used to partition the shuffle output * @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If set to None, * the default serializer, as specified by `spark.serializer` config option, will * be used. * @param keyOrdering key ordering for RDD's shuffles * @param aggregator map/reduce-side aggregator for RDD's shuffle * @param mapSideCombine whether to perform partial aggregation (also known as map-side combine) */
 //ShuffleDependency指的是,子RDD的partition部分依赖于父RDD的每个Partition 部分依赖被称为 ShuffleDependency。
 //其实 ShuffleDependency 跟 MapReduce 中 shuffle 的数据依赖相同(mapper 将其 output 进行 partition,然后每个 reducer 会将所有 mapper 输出中属于自己的 partition 通过 HTTP fetch 得到)。
@DeveloperApi class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag]( @transient private val _rdd: RDD[_ <: Product2[K, V]], val partitioner: Partitioner, val serializer: Option[Serializer] = None, val keyOrdering: Option[Ordering[K]] = None, val aggregator: Option[Aggregator[K, V, C]] = None, val mapSideCombine: Boolean = false) extends Dependency[Product2[K, V]] { override def rdd: RDD[Product2[K, V]] = _rdd.asInstanceOf[RDD[Product2[K, V]]] private[spark] val keyClassName: String = reflect.classTag[K].runtimeClass.getName private[spark] val valueClassName: String = reflect.classTag[V].runtimeClass.getName // Note: It's possible that the combiner class tag is null, if the combineByKey // methods in PairRDDFunctions are used instead of combineByKeyWithClassTag. private[spark] val combinerClassName: Option[String] = Option(reflect.classTag[C]).map(_.runtimeClass.getName) val shuffleId: Int = _rdd.context.newShuffleId() val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle( shuffleId, _rdd.partitions.size, this) _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this)) } /** * :: DeveloperApi :: * Represents a one-to-one dependency between partitions of the parent and child RDDs. */ @DeveloperApi class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = List(partitionId) } /** * :: DeveloperApi :: * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs. * @param rdd the parent RDD * @param inStart the start of the range in the parent RDD * @param outStart the start of the range in the child RDD * @param length the length of the range */ @DeveloperApi class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int) extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = { if (partitionId >= outStart && partitionId < outStart + length) { List(partitionId - outStart + inStart) } else { Nil } } }

ShuffleDependency的参数说明:

1.RDD数据集合中的元素需要是(K,V)类型,因为一般需要依据key进行shuffle,所以数据结构往往是key-value;同时Shuffle需要根据K做shuffle output的partition。

2.Partitioner,按照K进行分区的算法,比如HashPartitioner

3.Serializer,因为Shuffle过程需要有数据的网络传输,因此需要序列化,Serializer即是指定序列化算法

4.keyOrdering

5.aggregator,mapSideCombine用于map端的combine

6.shuffleId:每个shuffle操作都有一个唯一的ID

原文地址:https://www.cnblogs.com/itboys/p/6037593.html