2018-2019-1 20189205 《Linux 内核原理与分析》第三周作业

操作系统是如何工作的

内核实现

本周学习内容是实现一个简单的时间片轮转多道程序内核。
首先需要在Linux虚拟机中再构建一个虚拟的x86CPU硬件平台。这个平台的构建我们利用了部分Linux 3.9.4版本源代码以及网上的内核源代码。
内核搭建好后其启动效果如下:

而后,我们需要在搭建好的内核的基础上,修改内核的源程序,构建我们所需的程序内核。
首先我们增加一个mypcb.h头文件,用于定义进程控制块(PCB)的数据结构。我们知道,在操作系统中,每一个进程都依赖于一个PCB,以用于进程调度,来实现进程的并发执行。因此,我们的PCB结构定义如下:
struct Thread {
    unsigned long       ip;        //进程eip
    unsigned long       sp;        //进程esp
};

typedef struct PCB{
    int pid;                                //进程id
    volatile long state;                    //进程状态
    char stack[KERNEL_STACK_SIZE];          //进程堆栈
    struct Thread thread;                   //
    unsigned long   task_entry;             //进程的起始入口地址
    struct PCB *next;                       //指向下一个进程
}tPCB;

void my_schedule(void);                     //进行进程调度
然后,我们修改一下mymain.c文件,此文件为内核的入口,用于内核各组件的初始化。我们通过这段程序来启动内核的0号进程,其代码如下:
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0
    int i;
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];

    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movl %1,%%esp
	"   
        "pushl %1
	"          
        "pushl %0
	"        
        "ret
	"      
        "popl %%ebp
	"
        : 
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   
    );
}


void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
              printk(KERN_NOTICE "this is process %d -
",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +
",my_current_task->pid);
        }     
    }
}
另外还要修改myinterrupt.c文件,增加进程调度函数my_schedule(void),以进行进程切换。其代码如下:
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

void my_timer_handler(void)
{
#if 1
    if(time_count%10000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<
");
        my_need_sched = 1;
    } 
    time_count ++ ;  
#endif
    return;     
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<
");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
        asm volatile(   
            "pushl %%ebp
	"       
            "movl %%esp,%0
	"  
            "movl %2,%%esp
	"   
            "movl $1f,%1
	"         
            "pushl %3
	" 
            "ret
	"         
            "1:	"                 
            "popl %%ebp
	"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);      
    }
    else
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
        /* switch to new process */
        asm volatile(   
            "pushl %%ebp
	"      
            "movl %%esp,%0
	"    
            "movl %2,%%esp
	"    
            "movl %2,%%ebp
	"     
            "movl $1f,%1
	"         
            "pushl %3
	" 
            "ret
	"          
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );          
    }   
    return; 
}
可以看出,整个内核的运行过程是:
首先启动内核,启动0号进程进行初始化,其中0号进程的启动部分使用了内嵌汇编代码编写:
    asm volatile(  
        "movl %1,%%esp
	"     /*将进程原堆栈栈顶的地址(这里是初始化的值)存入ESP寄存器 */  
        "pushl %1
	"          /* 将当前EBP寄存器值入栈 */  
        "pushl %0
	"          /* 将当前进程的EIP(这里是初始化的值)入栈*/  
        "ret
	"               /* ret命令正好可以让入栈的进程EIP保存到EIP寄存器中*/  
        "popl %%ebp
	"       /*这里永远不会被执行,知识与前面push指令结对出现,是一种编码习惯*/
        :   
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   
    ); 
当进程0的时间片用完(my_process中的i累加到100000000),将利用进程调度函数,运行进程1,其调度过程执行如下:
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
        asm volatile(   
            "pushl %%ebp
	"       
            "movl %%esp,%0
	"  
            "movl %2,%%esp
	"   
            "movl $1f,%1
	"         
            "pushl %3
	" 
            "ret
	"         
            "1:	"                 
            "popl %%ebp
	"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);      
    }
    else
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
        /* switch to new process */
        asm volatile(   
            "pushl %%ebp
	"      
            "movl %%esp,%0
	"    
            "movl %2,%%esp
	"    
            "movl %2,%%ebp
	"     
            "movl $1f,%1
	"         
            "pushl %3
	" 
            "ret
	"          
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );
    }
由于进行1并未被执行过,其调度过程中执行else部分的进程调度代码。
同理,当进程1的时间片用完,将再次利用调度函数将运行进程0,此时进程0是从新被执行,将使用if部分的进程调度代码。
由此,每过一个时间片(通过my_process中i的不断模100000000累加),内核将不断在进程0与进程1之间切换。

问题与解决

本周在搭建内核环境时,在make的过程中,gcc报错。


原因是因为找不到compiler-gcc7.h头文件,进入到文件目录下,发现确实没有该文件,只有compiler-gcc.h、compiler-gcc3.h、compiler-gcc4.h三个文件,猜测可能是因为下载的Linux源文件版本不同的原因。在网上下载compiler-gcc7.h文件后重新编译,内核可正常运行。

原文地址:https://www.cnblogs.com/hzj20189205/p/9867412.html