机器学习算法一:感知器学习

问题描述:

  给定线性可分数据集:T={(x1,y1),(x2,y2),...,(xN,yN)},存在超平面S:$wcdot x+b=0$

$ left{egin{matrix} wcdot x+b>0,y=+1\  wcdot x+b<0,y=-1 end{matrix} ight. $

学习策略:

  定义点x0到超平面S的距离为:

  $frac{1}{left | w ight |}left | w cdot x +b ight |$

  对于误分类的数据$(x_{i},y_{i})$来说,$-y_{i}(w cdot x_{i}+b)>0$

  因此误分类点$x_{i}$到超平面S的距离时:$-frac{1}{left | w ight |} y_{i}(w cdot x_{i}+b)$

  假设超平面S的误分类点集合为M,那么所有误分类点到超平面S的总距离为:

$- frac{1}{left | w ight |}sum_{x_{i}in M}y_{i}(w cdot x_{i}+b)$

  不考虑$frac{1}{left | w ight |}$ ,就得到感知机学习的损失函数。

  定义损失函数为: $L(w,b)=-sum_{x_{i} in M}y_{i}(w cdot x_{i}+b)$,其中M为误分类点的集合。

  最小化损失函数:$min_{w,b}L(w,bdisplaystyle )=L(w,b)=-sum_{x_{i} in M}y_{i}(w cdot x_{i}+b)$

  使用梯度下降法求解:梯度分别为

  $igtriangledown _wL(w,b)=-sum_{x{i} in M}y_{i}x_{i}$

  $igtriangledown _bL(w,b)=-sum_{x_{i} in M}y_{i}$

  随机选取一个误分类点$(x_{i},y_{i})$,对w,b进行更新:

  $wleftarrow w+eta y_{i}x_{i}$
  $b leftarrow b+ eta y_{i}$

  其中$eta$成为步长,即学习率(learning rate)

 

感知机学习算法的原始形式:

  输入:训练数据集$T = left {  (x_{1},y_{1}),(x_{2},y_{2}),cdots ,(x_{N},y_{N})  ight } $

  输出:w,b;感知机模型$f(x)=sign(w cdot x +b)$.

  (1) 选取初始值$w_{0},b_{0}$

  (2) 在训练集中选取数据$(x_{i},y_{i})$

  (3) 如果$y_{i}(w cdot x_{i} +b) leqslant  0$

            $w leftarrow w + eta y_{i}x_{i}$

            $b leftarrow b + eta y_{i}$

  (4) 转至(2),直到训练集中没有误分类的点

 

感知机学习算法的对偶形式:

  基本思想:将w和b表示为实例$x_{i}$和标记$y_{i}$的线性组合的形式,通过求解其系数而求得w和b。假设初始值$w_{0}$,$b_{0}$均为0。对误分类点$(x_{i},y_{i})$通过

$wleftarrow w+ eta y_{i}x_{i}$

$b leftarrow b+ eta y_{i}$

逐步修改w,b,设修改n次,则w,b关于$(x_{i},y_{i})$的增量分别为$alpha_{i}y_{i}x_{i}$和$alpha_{i} y_{i}$,这里

$alpha_{i}=n_{i}eta$。最后学习到的w,b可以表示为:

$w=sum_{i=1}^{N}alpha_{i}y_{i}x_{i}$

$b=sum_{i=1}^{N}alpha_{i}y_{i}$

这里,$alpha_{i}geqslant 0,i=1,2,...,N$ ,当$eta=1$时,表示第i个实例点由于误分而更新的次数。实例点更新的次数越多,意味着它距离超平面越近,也就是越难正确分类。

  算法描述:

  输入:训练数据集$T = left {  (x_{1},y_{1}),(x_{2},y_{2}),cdots ,(x_{N},y_{N})  ight } $

  输出:$alpha$,b;感知机模型$f(x)=sign(sum_{j=1}^{N}alpha_{j}y_{j}x_{j}cdot x+b)$。其中

  $alpha=(alpha_{1},alpha_{2},...,alpha_{N})^{T}$。

  (1) $alpha leftarrow 0,b leftarrow 0$

  (2) 在训练集中选取数据$(x_{i},y_{i})$

  (3) 如果$ y_{i}(sum_{j=1}^{N}alpha_{j}y_{j}x_{j} cdot x_{i}+b) leqslant 0 $

$alpha_{i} leftarrow alpha_{i}+ eta$

$b leftarrow b+ eta y_{i}$

  (4) 转到(2)直到没有误分类数据。

 

  

 

 

原文地址:https://www.cnblogs.com/hypnus-ly/p/8392980.html